


Conservation Agriculture in India

This book examines the current situation, levels of adoption, management 
practices, and the future outlook of conservation agriculture in India, and also in 
other tropical and subtropical regions of the world.

While conservation agriculture is proposed as an important means to combat 
climate change, improve crop productivity and food affordability, and to pro-
tect the environment, the adoption of conservation agriculture in India, and 
south- east Asia more broadly, has been slow. This volume reflects on the current 
status of conservation agriculture in India, asking why adoption has been slow 
and putting forward strategies to improve its uptake. The chapters cover the 
various aspects of crop management such as soil, water, nutrients, weeds, crop 
residues, machinery, and energy, in a range of environments, including irrigated 
and rainfed regions. The impact of climate change and the economic consider-
ations behind the adoption of conservation agriculture are also discussed. The 
volume concludes by discussing the future outlook for conservation agriculture 
in India, in particular drawing out parallels with other tropical and subtropical 
regions of the world.

This book will be of great interest to students and scholars of conservation 
agriculture, sustainable agriculture, crop and soil management, and environ-
mental and natural resource management.
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Foreword I

The Green Revolution during the 1960s led to increased productivity and the 
elimination of acute foodgrain shortages in India. These technologies primarily 
involved growing of high- yielding dwarf varieties of rice and wheat, increased use 
of chemical fertilizers and other agrochemicals, and the expansion of irrigation 
facilities. This was also accompanied by the other so- called modern methods of 
cultivation, which included maximum tilling of land, virtually clean cultivation 
with complete removal of crop residues and in- field burning of biomass, fixed 
crop rotations mostly involving cereals, and the elimination of fertility- restoring 
pulses and oilseed crops in the highly productive north- western plain zone of the 
country.

Over the last 4– 5 decades (since circa 1970), India has achieved not only 
self- sufficiency in foodgrain production but also the capability to export food 
commodities. This is cited as one of the greatest accomplishments of Indian 
agriculture in the post- independence era. However, the transformation from 
‘traditional animal- based subsistence farming’ to ‘intensive chemical-  and 
tractor- based modern agriculture’ has led to a multiplicity of issues associated 
with the sustainability of these production practices. The adoption of these 
technologies has led to declining factor productivity, degrading soil health, 
surface and groundwater eutrophication, air pollution, increasing cost of pro-
duction, and lower profitability. Furthermore, soils are becoming impoverished 
due to the unbalanced use of fertilizers, and the discontinuation of traditional 
practices like mulching, intercropping, and inclusion of legumes in cropping 
systems. Consequently, the use of organic manures, compost, and green manure 
crops has also decreased considerably for various reasons. Similarly, water 
resources are under great stress due to their indiscriminate exploitation and 
also being polluted due to anthropogenic perturbations. Burning of fossil fuels 
and crop residues, and puddling for rice cultivation lead to the emission of 
greenhouse gases (GHGs), which are responsible for climate change and global 
warming. There is also a growing realization that productivity levels are stag-
nating, and the incomes of farmers are reducing due to the rising costs of the 
inputs and farm operations. Modern cultivation practices are not sustainable, 
and there is a need for a paradigm shift from the business as usual of crop pro-
duction on arable lands.

 



xii Foreword I by Rattan Lal

Conservation agriculture (CA) is a new paradigm in resource management 
for alleviating the problems associated with the so- called modern cultivation 
practices. The three principles of CA are: (i) conversion to no- till or minimal 
mechanical soil disturbance, (ii) maintenance of permanent biomass mulch 
cover on the soil surface, and (iii) diversification of crop species and the use of 
cover crops and forages in the rotation cycle. These principles are universally 
applicable to all agricultural landscapes and land uses with locally fine- tuned and 
adapted practices. CA also requires suitable modifications in the use of supple-
mental irrigation, fertilizers, and weed and pest management practices as well 
as farm machinery compared with those for conventional tillage. It is a holistic 
approach to improving productivity and soil health.

Two major innovations in the latter half of the 20th century have led to a 
change in our thinking on crop production. These are the availability of: (i) new 
farm machinery, and (ii) effective herbicides, which suggest that ploughing of 
fields is no longer required for sowing, fertilizer placement, and weeding. A new 
generation of farm machinery can place the seed and fertilizer at an appropriate 
depth in the desired amounts. Furthermore, these machines can work in standing 
as well as slashed crop residues; thus, providing a very effective mulch cover for 
moisture and nutrient conservation, soil temperature moderation, and weed 
control. In addition to the availability of new herbicides, biotic systems of weed 
control (with mulching and cover cropping) have also necessitated a change 
in our thinking about weed management. Furthermore, other triggering factors 
for a shift towards CA are changing climate, increasingly scarce labour avail-
ability, degrading soil health, declining factor productivity, rising costs, and ever- 
decreasing farm incomes. Thus, CA systems help in overcoming the problems 
being experienced by ploughed systems.

CA- based technologies have been developed, and the benefits in terms of 
enhanced productivity, profitability, soil health, and climate resilience have been 
documented in most parts of the country. However, these technologies have been 
adopted on a limited scale due to the apparent apprehensions, lack of will, and 
some operational constraints. There exists an immense scope for bringing barren 
and fallow areas under profitable cropping systems with the adoption of CA- 
based technologies. Such a transformational change will require a coordinated 
effort involving multi- stakeholders to enhance farmers’ awareness and demon-
strate the effectiveness of these technologies on a large scale. Furthermore, neces-
sary back- up in the form of suitable farm machinery (on a rental basis) is required 
to facilitate the adoption of these technologies.

CA is a challenging and exciting subject for researchers, requiring a multi- 
disciplinary approach to address all the related issues in a comprehensive manner. 
Resource management scientists should take the lead to finetune CA for the 
site- specific conditions and perfect the technologies in their respective domains. 
Focus must be on reducing the cost of production while enhancing productivity, 
and improving soil quality and soil health. CA- based on- farm research should be 
an integral part of on- station research, without which research findings cannot be 
transformed into technologies. CA has been adopted globally on about 200 M ha, 
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including in North and South America, Australia, etc., and this transformation 
must also happen in India.

India has made commendable progress in developing CA- based technologies 
in different eco- regions. This book is an up- to- date synthesis of the available 
information on the potential and challenges of adopting CA in India. I am pleased 
that Dr. A.R. Sharma has taken this initiative to collate, organize, and present 
the available information, which is of interest to academicians, scientists, policy 
makers, research administrators, and field functionaries for enriching their know-
ledge on CA- based technologies. I commend the hard work and commitment 
of Dr. Sharma for preparing the book. It is indeed an important milestone in 
promoting the adoption of CA in India, South Asia, and elsewhere with similar 
biophysical and social environments.

(Rattan Lal)
(World Food Laureate 2020)

Distinguished University Professor of Soil Science
Director, CFAES Rattan Lal Center for Carbon Management    

and Sequestration
IICA Chair in Soil Science and Goodwill Ambassador for    

Sustainable Development Issues
Adjunct Professor, University of Iceland, & the Indian    

Agricultural Research Institute
The Ohio State University



Foreword II

The invention of the plough for soil inversion and growing crops during the    
mid- 19th century was one of the major milestones in the history of agriculture. 
For centuries, conventional agricultural systems have been characterized by 
intensive tillage and soil inversion operations, clean cultivation, extensive use 
of irrigation water, and chemical fertilisers. These have no doubt brought yield 
revolutions, but at the cost of over- exploitation of our natural resources. In South 
Asia, the adoption of intensive tillage practices since the Green Revolution in the    
mid- 1960s has led to a factor productivity decline, deterioration in soil health, 
depletion of groundwater, increase in the cost of production, lower profitability, 
and environmental degradation. Therefore, it has been argued that the system 
of crop production should be suitably modified in accordance with the changing 
environment and deteriorating natural resources.

Also, the Sustainable Development Goals (SDGs) demand an emphasis on 
regenerative, climate- smart, and profitable farm innovations. Over recent years, 
attention has been given to conservation agriculture (CA) as a strategy towards 
‘sustainable intensification’ and regenerative agriculture (RA), especially for 
smallholder farming in South Asia. Accordingly, CA has emerged as an alterna-
tive to inefficient tillage- based agriculture. CA is actually an ecosystem approach 
towards RA, mainly based on three interlinked principles: (i) no- till or minimum 
mechanical soil disturbance, (ii) permanent maintenance of soil mulch (crop 
biomass and cover crops), and (iii) diversification of the cropping system (eco-
nomically, environmentally, and socially adapted rotations, including legumes 
and cover crops).

Conservation agriculture has been adopted so far on about 200 M ha in coun-
tries such as the United States, Canada, Brazil, Argentina, and Australia. In con-
trast, the uptake of CA has rather remained slow in Asian and African countries. 
In India, efforts to promote CA started in the mid- 1990s, primarily in the rice– 
wheat cropping system in the north- western plains. The area of zero- till wheat 
reached about 3 M ha in the early part of the 21st century. In recent times, issues 
related to crop residue burning have assumed serious concern. In this context, 
the recycling of crop residues under the CA system is a rather practical, eco-
nomically viable, and environmentally sound option to deal with the problem. 
It will help in managing crop residues in combine- harvested fields by avoiding 
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their burning, reducing the cost of cultivation by eliminating elaborate tillage 
operations, and improving soil health due to residue recycling. Science- based 
evidence has demonstrated that the adoption of CA- based sustainable intensi-
fication has merits beyond resource conservation for minimizing climatic risks 
and in reducing environmental footprints due to reduced GHG emissions and 
sequestering C in the soil.

Conservation agriculture is a knowledge- intensive concept, which requires 
specialized expertise and location- specific adaptation. Despite its proven benefits, 
adoption of the CA system requires a paradigm shift from commodity-  and 
technology- centric conventional agriculture to system- based management using 
portfolio approaches. The CA technologies are essentially herbicide- driven, 
machine- driven, and knowledge- driven. It, therefore, requires good expertise 
and resources for adoption on a large scale. For wider adoption, there is a need to 
change the mindset of policy makers, researchers, and farmers. Tremendous efforts 
will be needed to persuade farmers to adopt CA, especially in dryland areas. In 
addition to new science, knowledge, and capacity, the accelerated adoption of 
CA would need urgent policy changes, especially to incentivize farmers for the 
ecosystem services by adopting CA on their farms, thus helping the nation in 
carbon sequestration. We must aim to cover at least 20 M ha under CA in India 
by 2030.

A great deal of research has been carried out on CA across diverse cropping 
systems, soils, and ecological conditions in India. In most of these studies, CA 
has had either the same or higher crop yields, besides other direct and indirect 
benefits. However, there has not been a comprehensive synthesis on the work 
done on CA so far. I am pleased to note that Dr. A.R. Sharma has taken this ini-
tiative to compile the available information on CA for the benefit of researchers, 
extension agents, policy planners, and other stakeholders. I am sure this book will 
prove to be highly useful in appreciating the expected benefits and promote faster 
adoption of CA in India. Dr Sharma deserves full appreciation for the timely 
bringing out of this useful publication.

(R.S. Paroda)
(Padma Bhushan Awardee)
Founder Chairman, TAAS

Former Director General, ICAR and
Secretary, DARE, Government of India
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Preface

Conservation agriculture is the fastest adopted technology globally, covering 
>200 M ha and showing a double- digit annual growth (>10%) over the last two 
decades. Currently, it occupies around 15% of the global cropped area, mainly 
in the countries of South America (>65% coverage), North America (>30%), 
and Australia and New Zealand (50%). Adoption in other parts of the globe, 
including Russia, Asia, Africa, and Europe, remains low (<5%) but it has been 
picking up in recent times. It is envisaged to cover 50% of the global cropped area 
under conservation agriculture by 2050.

In India, the Green Revolution during the mid- 1960s resulted in a tremen-
dous increase in foodgrain production, leading to food sufficiency over the next 
two decades by the mid- 1980s. However, the productivity levels stagnated there-
after, and also there were emerging concerns about resource degradation due 
to excessive exploitation of natural resources in the highly productive zones of 
the country. Indiscriminate use of chemical fertilizers and other agro- chemicals, 
excessive exploitation of ground and surface water for flood irrigation, energy for 
intensive tillage operations, crop residue burning, and decreased use of organics 
are also responsible for deteriorating soil health. Furthermore, climate change has 
emerged as a major challenge, having adverse effects on agricultural productivity 
in conventional farming systems.

Research on conservation agriculture in India has been on- going since the 
mid- 1990s, and picked up from the mid- 2000s as seen from the number of research 
articles published in leading Indian journals and elsewhere. Most research on 
conservation agriculture in different regions of the country on crops like wheat, 
rice, maize, soybean, and other crops has shown that in >80% of cases, the yields 
are either greater than or equal to those with a conventional agriculture system 
but with less use of inputs, thus resulting in increased profitability and beneficial 
effects on soil health. However, the adoption levels on farmers’ fields are low, 
except in some localized regions of north- western and central India for wheat 
cultivation, coastal areas of Andhra Pradesh for maize and sorghum cultivation, 
the north- eastern hill region for mustard cultivation, and the Konkan region of 
Maharashtra for rice and other crops. This is mostly due to a lack of awareness 
and expertise, farm machinery, incentives, and policy support.

 



xviii Preface

This book is the first up- to- date compilation on the available information on 
various aspects of conservation agriculture in the Indian context. It presents the 
practical experiences of research workers associated with this subject for more 
than two decades. It covers the global scenario and status of conservation agricul-
ture in India; management options; soil health and GHG emissions; economics, 
adoption and future of conservation agriculture in India, in four different sections 
and 17 chapters. In addition, internationally renowned scientists, Prof. Rattan 
Lal, World Food Laureate (2020) and Dr. R.S. Paroda, Padma Bhushan Awardee 
(2012) have forwarded their inputs for promotion of conservation agriculture 
in India.

I have acquired adequate knowledge and experience since the late 1990s 
on conservation agriculture based on my researches in the hilly regions of the 
western Himalayas, alluvial soils of the Indo- Gangetic plains, vertisols of central 
India, and now in the impoverished soils of Bundelkhand region. I am thankful 
to my mentors, Dr. J.S. Samra, Dr. C.L. Acharya, Dr. H.S. Gupta, Dr. Raj 
Gupta, and Dr. R.S. Paroda; my colleagues, Dr. U.K. Behera, Dr. T.K. Das, and    
Dr. M.L. Jat, and a large number of post- graduate students who guided and assisted 
me in my endeavours on this subject.

It is hoped that this book will provide insights and encouragement to my 
fellow agronomists and other resource management scientists to become not only 
preachers but practitioners of conservation agriculture to achieve the target of 
covering 20 M ha in the country by 2030. It will be immensely useful to post-
graduate students, teachers and researchers, policy makers, extension personnel, 
and other stakeholders to enrich their knowledge and further refine this tech-
nology in their respective domains.

Jhansi, India (A.R. Sharma)
Editor
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Sustainable Intensification
Global Options and Opportunities

Amir Kassam, Y.S. Saharawat, and I.P. Abrol

Introduction

The term sustainable intensification has become popular in recent years. While 
its definition can vary, it can be considered in both a narrower and a broader sense 
as a process to optimize production system performance on farms and watersheds 
as well as at the sector level within the local and national economy so that it is 
optimal institutionally for society and the environment along the value chains 
serviced by the public, private, and civil sectors. The narrower ecological def-
inition at the production level applies to the process of optimizing production 
systems performance. This involves maximizing yields (total output) and factor 
productivity (efficiency) of the whole production system in space and time with 
minimum negative consequences on the environment while maximizing system 
resilience to biotic and abiotic stresses and shocks, and building and sustaining 
ecosystem resources and functions and the flow of ecosystem societal services 
(Kassam 2013). This combines increasing biological outputs, productivity (effi-
ciency), resilience, and ecosystem or environmental services through integrated 
production systems and landscape management in rainfed and irrigated 
conditions. Protection and management of all the ecosystem functions and ser-
vices on agricultural and natural landscapes are considered.

In the broader context, the sustainable intensification definition applies at 
the sector level across value chains for society and the environment and would 
also encompass the existence of effective demand for biological products by con-
sumers and industry, input and output supply chains for production inputs and 
biological outputs, as well as the existence of supporting social and economic 
organizations for social equity, employment, livelihoods, economic growth, and 
the environment. This implies improving the capacities of people and informal 
and formal institutions to deliver and utilize affordable inputs efficiently, dis-
tribute and utilize biological outputs efficiently so as to avoid excessive wastage, 
and harness ecosystem services at all landscape levels that benefit producers and 
consumers alike. This further implies the existence of a supportive knowledge 
and innovation system, and above all, of enabling policies for public, private, and 
civil sector engagement to sustain and keep improving the whole food and agri-
culture system for farmers, society, and the planet.
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Whichever way sustainable intensification is defined, it is necessary to achieve 
desired yields of crops and livestock in ways that do not harm the natural resource 
base and the environment, and even improve them in terms of quality and 
functions. One of the common reasons promoted to justify the need for sustain-
able production intensification is to meet the increasing demand for food and 
raw materials for industry due to increases in population, income, and urbaniza-
tion. The other reason is based on the fact that the land resource and environ-
mental degradation caused by conventional tillage- based agricultural production 
systems, as well as by traditional grazing systems, has become unacceptable world-
wide, including to producers themselves, to society in general, to governments, 
and to the development community globally.

Since the mid- 1990s, much has been debated about the need for sustainable 
production intensification by the mainstream research and development com-
munity, and quite rightly so. Generally, at the ecological level, a sustainable 
production intensification approach would be adopted at the practical level by 
farmers only if it offers the following crop and land production performance:    
(i) maximum farm biological outputs with minimum inputs, i.e. maximum yields 
and total output with minimum costs, and therefore maximum profit; (ii) max-
imum efficiency of utilization of purchased inputs and natural resources, i.e. 
maximum individual factor productivities and maximum total productivity;    
(iii) maximum resilience to biotic and abiotic stresses, including those arising 
from climate change requiring climate change adaptability and mitigation; 
and (iv) best quality ecosystem services at all levels from production fields to 
landscapes and territorial, to sustain maximum output and productivity and meet 
societal and environmental needs. Additionally, a suitable sustainable produc-
tion approach must also have the ability to help mitigate potential damage to 
agricultural land or restore any damage or loss that may occur in agro- ecological 
land potentials and in ecosystem services during production or rehabilitate agri-
cultural land that has been abandoned due to degradation. Consequently, terms 
such as regenerative agriculture, climate- smart agriculture, or ecological agri-
culture have recently become fashionable in describing the kind of agriculture 
needed to achieve sustainable intensification.

Some 85% of our crop lands globally are under tillage systems (Kassam et al. 
2021), and therefore unsustainable in every sense. These systems rely on regular 
tillage of different types for land preparation, seeding and crop establishment, and 
for weeding. In addition, farmers managing much of the tilled cropland, espe-
cially mechanized tillage farmers, also rely on the use of herbicides to control 
weeds, making tillage- based production systems unsustainable due to continuous 
soil degradation and erosion, inefficient use of all purchased inputs such as seeds, 
nutrients, pesticides, fuel, and labour. We need a production paradigm which not 
only enables farmers to build and manage production in systems that are sustain-
able over the longer term but that also is able to restore the total agronomically 
attainable agro- ecological land potentials (of annual and perennial crops 
including grasses, pastures, shrubs, trees, and livestock, and of ecosystem services) 
that have been lost, and at the same time is capable of self- recuperation to cope 
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with normal wear and tear. Indeed, what we need now is a paradigm which has 
all the above key characteristics, upon which to build sustainable food and agri-
culture systems, and its principles can be put into practice gainfully by any serious 
land- based farmer, small or large, rich or poor, men or women, mechanized or 
not, and by any government and by any public, private, and civil sector institu-
tion which is willing to service and support the farmers and food and agriculture 
system (Kassam 2016a; Paroda 2016).

These characteristics thus allow the conservation or preservation of the nat-
ural resource base, as well as the restoration or rehabilitation of any lost agro- 
ecological functions and productivity potential due to land degradation and 
erosion, and lead to the enhancement of the ecological functions and product-
ivity potential of the resource base and the environment. Thus, it can be argued 
that only when all these features are operating satisfactorily in a production 
system, does the system qualify to be labelled as being ‘smart’ or ‘regenerative’.

These multiple outcomes from a production system, and the fact that they all 
can be harnessed simultaneously, imply that the terms agro- ecology, regenerative, 
sustainable, sustainable intensification, and smart or climate- smart agriculture 
can have real meanings and can be made to work at the practical level by farmers 
and supported by their service providers and supported by relevant institutions 
and policies.

The ability of agriculture to meet future demand placed upon it by society 
is generally analysed by mainstream scientists and policy analysts in terms of 
available resources and production inputs to supply the required level of agricul-
tural products. Similarly, production systems are commonly assessed on the effi-
ciency and effectiveness of different combinations of inputs, technologies, and/ 
or practices to produce certain agricultural outputs. It is only relatively recently 
that analyses have begun to address externalities of production systems, such 
as environmental damage, the associated input factor inefficiencies, and poor 
resilience against major external biotic and abiotic challenges. However, rela-
tively rarely do mainstream researchers question the actual agricultural paradigm 
(characterized here as conventional tillage- based agriculture) itself in terms of 
its continuing appropriateness for the sustainable development agenda and for 
the environmental challenges faced by agriculture around the world. Equally, the 
delivery of supportive, regulatory, provisioning, and cultural ecosystem services to 
society by conventional tillage agriculture has not been an area of serious main-
stream research concern.

In general, mainstream approaches to agricultural assessments are simplistic 
and limited in scope. As a result, they are unable to identify and address the 
root causes of the damage caused to land resources, the environment, and human 
health by the current agricultural paradigm. Such assessments are also decoupled 
from the human and ethical consequences of the demands and pressures placed 
upon agricultural production by the food and agriculture system as a whole, 
including consumer demand, diets, human health, industry, government, and the 
economy. These aspects are also important causes of unsustainability when it is 
considered that the world already produces more than twice the amount of food 
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needed to feed its total population while wasting 30% of it, and yet mainstream 
scientists, global models, and multi- national corporations keep arguing the need 
for even greater production to meet the current and future demand. Ultimately, 
even ecologically sustainable production systems cannot continue to remain sus-
tainable if they are driven by demand levels and lifestyles that are excessive, 
wasteful, unhealthy, and unjust, supported by national and global food distribu-
tion systems that are discriminatory and not accessible to all (Kassam and Kassam 
2020). These aspects and issues of food system which are a major driver for agri-
cultural intensification are outside the scope of this chapter which focuses mainly 
on the ecological sustainability of agricultural production.

Extent and Seriousness of Land Degradation

The seriousness of agricultural land degradation, and its end result of desertifica-
tion has been receiving considerable attention from the international community 
for decades. A major reason for the slow progress in reversing the land degrad-
ation trends is the general lack of understanding and awareness about the root 
causes of land degradation and abandonment. Worldwide empirical and scientific 
evidence clearly shows that the root causes of soil degradation in agricultural land 
use and decreasing productivity –  as seen in terms of loss of soil health and even-
tual abandonment of land –  are closely related to the soil life- disrupting agricul-
tural paradigm based on mechanical soil tillage, the agricultural methods of using 
mouldboard ploughs, disc harrows, tine, rotavators, hoes, and other mechanical 
tools to prepare the fields for crop establishment and weed control. This mech-
anical disturbance leads to losses in soil organic matter, soil structure, and soil 
health, and debilitates many important soil-  and landscape- mediated ecosystem 
processes and functions.

For the most part, agricultural soils worldwide have been mechanically de- 
structured, agricultural landscapes are kept exposed and unprotected, and soil 
life is starved of organic matter, thus being reduced in biological activity and 
deprived of habitat. The loss of soil biodiversity, damaged soil structure and its 
self- recuperating capacity or resilience, increased compaction of topsoil and sub- 
soil, poor infiltration and increased water runoff and wind and water erosion, 
and greater infestation by insect pests, pathogens, and weeds indicate the current 
poor state of the health of most agricultural soils.

In the developing regions, a combination of all these elements is a major cause 
of low and stagnant/ declining agricultural productivity and inadequate food and 
nutrition security, poor adaptation of agriculture to climate change, and a general 
lack of pro- poor development opportunities for smallholder farmers.

In industrialized countries, the poor condition of soils and sub- optimal yield 
ceilings due to excessive soil disturbance through mechanical tillage is being 
exacerbated by: (a) the over- reliance on the application of mineral fertilizers as 
the main source of plant nutrients and (b) reducing or doing away with crop 
diversity and rotations, including legumes. The situation is now leading to further 
problems of increased threats from insect- pests, pathogens, and weeds, against 
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which farmers are forced to apply ever more pesticides including herbicides, and 
which further damages biodiversity and pollutes the environment.

It is reported that we have lost some 400 M ha of agricultural land from 
degradation since World War II (Montgomery 2007). This abandonment is 
due to the severe degradation and erosion arising from tillage- based agricul-
ture systems in both industrialized and less industrialized countries. A recent 
study puts the annual global cost of land degradation due to land use and cover 
change at 300 billion USD, of which sub- Saharan Africa accounted for some 
26%, Latin America and the Caribbean some 23%, and North America some 
12% (Khonya et al. 2016). Other reports indicate much higher costs, and in 
cases where priceless ecosystem services are lost, it is argued that it is not pos-
sible to put a cost value. This shows that our agro- ecosystems globally are facing 
a serious challenge of reversing the trends and of rehabilitating abandoned lands 
into productive and regenerative agriculture. However, solutions for sustainable 
soil management in farming have been known for a long time, at least since 
the mid- 1930s when the mid- west of the USA suffered massive dust storms and 
soil degradation due to a combination of intensive inversion ploughing of the 
prairies and multi- year drought.

The main purpose of tillage throughout ages has been two- fold, namely: to 
mechanically break and loosen the soil and to bury weeds in order to prepare a 
clean- looking seed- bed for sowing and crop establishment. Subsequently, during 
the season, the tillage operation is often used to control weeds. It is a commonly 
held belief by conventional non- organic and organic tillage farmers that the main 
benefit from tillage is to control or even eradicate weeds. However, in reality, 
tillage has been shown to increase weed infestation, and it has never been able to 
eliminate weed infestation.

In 1943, Edward H. Faulkner wrote a book ‘Plowman’s Folly’ in which he 
provocatively stated that it can be said with considerable truth that the use of 
the plough has actually destroyed the productiveness of our soils. More recently, 
David Montgomery in his well- researched book ‘Dirt: The Erosion of Civilizations’ 
shows that in general, with any form of tillage, including non- inversion tillage, 
the rate of soil degradation (and loss of soil health) and soil erosion is generally 
by orders of magnitude greater than the rate of soil formation, rendering agro- 
ecosystems unsustainable (Montgomery 2007). Similar to Faulkner, Montgomery 
concluded that tillage has caused the destruction of the agricultural resource 
base and of its productive capacity nearly everywhere in the world and continues 
to do so.

Tillage- based production systems everywhere have converted our agricultural 
soils and landscapes into –  for lack of a better term –  ‘dirt’ and even worse in 
terms of excessive use of agrochemicals, seeds, water, and energy, whilst increasing 
production costs, decreasing factor productivity, and reducing overall resilience. 
These have led to degraded agro- ecosystems and dysfunctional societal ecosystem 
services, including poor water quality and quantity, disrupted water, nutrient, and 
carbon cycles, suboptimal water, nutrient, and carbon provisioning and regula-
tory water services, and loss of soil and landscape biodiversity.
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Conservation Agriculture: A New Paradigm for Sustainable 
Production

In light of the above, the need for a new paradigm of agriculture has become 
increasingly clear. In recent decades, the situation of system unsustainability has 
begun to change, at least on the agricultural production side, as CA systems in 
rainfed and irrigated agriculture based on annual and perennial cropping systems, 
backed up by some 45– 50 years of research and practical experience, have spread 
in all continents and in most agro- ecologies around the world.

CA has been defined as a production system based on the application of 
three interlinked principles, namely: (1) continuous no or minimum mechanical 
soil disturbance; (2) permanent maintenance of biomass mulch soil cover; and 
(3) diversification of crop species (Kassam et al. 2020). In a CA system, the core 
practices that would correspond to these principles would be complemented by 
practices related to integrated crop, soil, nutrient, pest, water, and energy man-
agement (Lal 2015).

However, even production systems such as CA ultimately also have their limits 
when they are linked to unconstrained food systems in which food demand seems 
to be growing at a rate far in excess to what is needed to achieve food security for 
the total population. Indeed, while farmers of the world already produce enough 
food to meet the global food needs of more than twice the global population, some 
2 billion people remain poor and food insecure, and some 2 billion people are 
obese and overfed. In addition to the significant amount of food that is reported 
to go to waste, a significant portion of the food produced is fed to livestock to 
meet the increasing demand for livestock products by the population with higher 
incomes and urban lifestyles (Kassam and Kassam 2020). The inequity in the 
food distribution system due to income differentials cannot be addressed simply 
by adopting new production paradigm such as CA. It would also require struc-
tural changes in the political economy of the global food and agriculture system 
to make food more affordable by poorer sections of the population, the notion 
of food and land justice and food sovereignty to become more generally accept-
able, a greater proportion of food from primary production being used for human 
consumption than used as livestock feed for secondary production, and a substan-
tial move towards more healthy plant- based diets. These issues, although being 
beyond the scope of this chapter, are nonetheless of great importance if we are to 
minimize the unreasonable pressures currently being put on the natural resources 
and the environment as well as on the production systems and farmers, and on 
the food systems.

Making Sustainable Production Real Through CA

It would appear from the current scientific literature on sustainable production 
that we seem to have rediscovered the power of agro- ecology as a central element 
in helping us to understand what may constitute ecological sustainability of 
production systems and how it can be harnessed by all land- based agricultural 
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producers globally. This time round we seem to have discovered which principles 
of agro- ecology constitute the foundation of ecological sustainability in produc-
tion systems upon which to build overall economic, social, and environmental 
sustainability, and how to turn these principles into adapted CA systems and 
practices that are locally formulated and contextually robust or resilient. Unlike 
the struggling and vulnerable tillage production systems and food and agriculture 
systems built upon these, we appear to have come to realize that with CA produc-
tion systems, we can achieve sustainable production intensification and poten-
tially build sustainable food and agriculture systems provided some of the core 
elements of the unsustainable tillage agricultural production systems indicated 
above can be managed differently (Kassam 2016b).

The innovations represented by the core practices of CA and how these inte-
grate with conventionally defined good agricultural practices are of great import-
ance to the future of agriculture and food systems globally. They can appear 
counter- intuitive, and they seem to question the very foundation of conventional 
tillage- based agriculture and the underlying assumptions of the industrial mono-
lithic mind- set of the ‘Green Revolution’ agriculture. CA principles and systems 
have set in motion a global paradigm change in agriculture and food systems, 
benefitting all farmers and their rural communities who have adopted them ser-
iously, as well as the greater society of which they are a part and the environ-
ment in general. They are providing solutions to global challenges such as local 
and global food insecurity, poverty alleviation, agricultural land degradation and 
soil erosion, loss of efficiency and resilience in conventional agriculture, loss of 
ecosystem services and biodiversity, stagnating yields and land productivity, and 
climate change adaptability and mitigation, as outlined below.

Since the mid- 1990s, it has become apparent that climate change was upon us, 
and that it was necessary to develop climate- smart agriculture, defined as agricul-
ture which is adapted to climate change and is able to mitigate climate change by 
decreasing the emissions of CO2, CH4, and N2O. In recent years, CA has become 
accepted as being climate- smart and able to serve as the core of climate- smart 
agriculture.

In CA systems, all parts of the system function better and plants are larger and 
stronger, efficient, and resilient. Sometimes, CA has been referred to as being 
made up of three ‘Rs’ –  Roots, Residues, and Rotations. The new knowledge 
being generated about CA systems is of global significance and provides evi-
dence of the need to transform all land- based agriculture to CA so that they can 
more fully contribute to the future needs of the global society and of the planet. 
Conventional tillage- based agriculture is considered ‘bad business as usual’ and 
can no longer be relied upon to meet future needs.

Principles of CA described above, upon which to build sustainable production 
systems (Kassam, 2021), first and foremost, are functionally biological and eco-
logical in nature, meaning that when put into practice, using locally formulated 
adapted practices, they provide a biologically active ecological foundation for 
sustainable production by maintaining as many of the ecosystem functions below 
and above the ground in space and time that are present in natural ecosystems. 
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The actual forms of core CA practices generally establish many interactive phys-
ical, biological, chemical, and hydrological processes that restore and maintain 
soil health and functions (Anderson 2015), and which together with other best 
agricultural practices, such as integrated crop, soil, nutrient, water, pest, energy, 
labour, and farm power management, lead to improved performance in terms of 
biological output, ecosystem services, efficiency, and resilience from all land- 
based production systems. The interlinked core practices provide the following 
ecological improvements that are regenerative and enhance land productivity 
potentials and enable the best phenotypic performance from any adapted trad-
itional or modern genotype:

 • Continuous no or minimum mechanical soil disturbance. Sow seed or plant 
crops directly into untilled soil and no- till weeding in order to maintain soil 
organic matter; promote soil biological processes; protect soil structure and 
porosity and overall soil health; and enhance productivity, system efficiency, 
resilience, and ecosystem services.

 • Permanent maintenance of biomass mulch soil cover. Use crop biomass 
(including stubble) and cover crops to protect the soil surface; conserve 
water and nutrients; supply organic matter and carbon to the soil system; 
and promote soil biological activity to enhance and maintain soil health 
(including structure and aggregate stability), contribute to integrated weed, 
pest, and nutrient management, and enhance productivity, system efficiency, 
resilience, and ecosystem services.

 • Diversification of crop species. Use diversified cropping systems with crops in 
associations, sequences, or rotations that will contribute to enhanced crop 
nutrition; crop protection; soil organic matter build- up; and productivity, 
system efficiency, resilience, and ecosystem services. Crops can include 
annuals, trees, shrubs, nitrogen- fixing legumes, and pasture, as appropriate, 
including cover crops.

Global empirical and scientific evidence in support of the above contributions 
to the key elements of sustainable production intensification is now overwhelming 
and continues to accumulate in all continents and agro- ecologies. One feature 
of soil health improvement is the enhancement of soil life and land’s product-
ivity potential due to increased soil organic matter. Soil life, comprising of all 
forms of microorganisms and mesofauna, generates advantages leading to a better 
soil environment that improves soil structure and functions, root growth, and 
the relationship with soil microorganisms, as well as improving above- ground 
crop growth and yield. A number of adaptability advantages begin to operate in 
CA systems, improving over time, leading to improved farm output, efficiency in 
input use, enhanced resilience to extreme events, and to harnessing of a range 
of ecosystem services (Kassam 2020a,b). Greater and more stable yields, min-
imum use of purchased inputs, and minimization of soil degradation and erosion, 
and increased livestock carrying capacity are some of the major benefits in CA 
systems that are not available under conventional tillage production systems.
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Thus, unlike conventional tillage agriculture where the focus is on intensive 
tillage and high application of mineral fertilizers and pesticides, the focus in CA 
is on soil health and system health aimed at obtaining more output from less 
input, and with stability and least environmental damage. The key to soil health 
has been the central role played by soil organic matter in building soil life and 
biodiversity, leading to improved soil structure and pore volume, aggregate sta-
bility, and establishing a symbiotic relationship between crop root systems and 
soil microorganisms, all leading to improved phenotypic expression in terms of 
growth, yield, efficiency, resilience, ecosystem services, and minimizing all inputs 
and maximizing outputs. The counter- intuitive element in CA is the fact that it 
calls for no mechanical tillage and establishing soil and cropping system health 
based on soil biology, crop diversity, and biological pest control.

Global Adoption and Spread of CA

The good news is that we now have a new agricultural paradigm staring us in the 
face. It is called Conservation Agriculture, and it offers research, education, and 
development opportunities to all stakeholders –  public, private, and civil sectors –  
in the national and international food and agriculture systems to help accelerate 
the ongoing agricultural transformation. Since 2008– 9, the annual rate of expan-
sion of CA cropland area has been some 10 M ha. In 2008– 9, CA covered some 
107 M ha of annual rainfed and irrigated cropland, corresponding to 7.4% of 
global annual cropland, and in 2013– 14 it covered some 160 M ha of annual 
cropland, corresponding to about 11% of global annual cropland. In 2015– 16, 
CA covered more than 180 M ha of annual cropland, corresponding to 12.5% of 
global annual cropland (Kassam et al. 2019), and in 2018– 19 CA covered more 
than 205 M ha, corresponding to 14.7% of global annual cropland (Kassam et al. 
2021). Some 50% of CA land is in low- income countries, particularly in Latin 
America and Asia, and during the last decade it has begun to spread in west and 
central Asia and Africa as farmers and their communities learn how to overcome 
the constraints to adoption of CA. CA principles are also being applied to peren-
nial crops in orchard systems involving olives, vines, and fruit trees, in plantation 
systems such as oil palm, cocoa, coffee, rubber, and coconut, and in agroforestry 
systems where CA systems with trees are being referred to as being part of ‘ever-
green agriculture’. This ongoing transformation is an illustration that farmers are 
willing to take greater control of their future by experimenting with radically new 
and innovative no- till CA principles and related practices in building sustainable 
and regenerative farming systems. Some 45– 50 years of CA research in different 
parts of the world has shown that CA principles are universally applicable and 
that sustainable production and land management are possible for all farmers, 
small- scale and large- scale, rich and poor, men and women.

Thus, globally, agriculture is undergoing a fundamental change, a process that 
began in earnest around 1990 in response to unacceptable degradation that was 
being caused by all forms of tillage agriculture. The realization that tillage agricul-
ture is inherently unsustainable came about as a result of the ‘dust bowls’ in the 
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mid- West United States caused by the use of mouldboard ploughs to open up the 
prairies, accompanied by multi- year droughts. This disaster led to successful trials 
with no- till farming initially in the United States, United Kingdom, and parts of 
Africa, but it then took until around the end of the 1980s for no- till agriculture to 
take off, initially in the United States, Brazil, Argentina, Canada, and Australia, 
and later more generally in all continents, including in the last ten years in Asia, 
Europe, and Africa. The modern form of no- till agriculture has been referred 
to, since the mid- 1990s, as Conservation Agriculture with its three interlinked 
principles, described above, of no or minimum mechanical soil disturbance (no- 
till seeding/ crop establishment and weeding); maintenance of soil mulch cover 
with crop biomass, stubbles, and cover crops; and diversified cropping systems 
with annuals and perennials through rotations, sequences, and associations.

The no- till champions of the 1970s and 1980s, comprising of farmers and 
supported by a small number of research and extension agronomists and engineers, 
and no- till soil and water conservationists, led to globalization of the awareness 
of the severe soil and land degradation being caused by tillage agriculture and 
its inherent long- term ecological unsustainability. It also led to the awareness of 
the consequent loss of farm output and profit, of production efficiency, of resili-
ence, and of ecosystem services (and total abandonment of agricultural land due 
to natural resources degradation including biodiversity and the environment). 
During this period, the transformation of tillage agriculture to CA was not driven 
by mainstream research, education, extension, and development systems, in fact, 
quite the contrary. Some national research systems openly opposed the spread of 
CA, and to some extent this is the case even today. As a result, the adoption and 
spread of CA has been very much a farmer- led phenomenon.

The globalization of CA began in earnest with the establishment, in 2001, of 
the process of holding a World Congress on Conservation Agriculture every two 
to three years, sponsored by the FAO and agricultural development bodies in 
Europe, Africa, Latin America, Australia, and North America along with some 
multi- national corporations involved in providing agricultural inputs to farmers. 
The first Congress was held in Spain (2001), the second in Brazil (2003), the 
third in Kenya (2006), the fourth in India (2009), the fifth in Australia (2011), 
the sixth in Canada (2014), the seventh in Argentina (2017), and the eighth in 
Switzerland (2021).

This ongoing transformation is an illustration that farmers are willing to take 
greater control of their future by experimenting with radically new and innovative 
no- till CA principles and related practices in building sustainable and regenera-
tive farming systems. What is more exciting is the fact that CA principles are 
actually being applied to all land- based farming systems –  rainfed systems, irrigated 
and partially irrigated systems, non- organic and organic systems, annual cropping 
systems including rice- based systems, perennial cropping systems including 
mixed- systems, horticultural systems, plantation and orchard systems, agroforestry 
systems, and crop– livestock systems, including with trees. Where purchased inputs 
are not available, the CA approach has shown that it is possible to intensify sus-
tainably using local resources, including adapted traditional cultivars. Thus, there 
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are many farmers, especially in Asia and Africa, who are practicing uncertified 
organic CA systems. No wonder, the certified organic tillage- based farming sector 
is taking a closer and serious look at CA and certified conventional tillage organic 
systems are also being converted to certified organic CA systems.

Despite the significant progress in CA adoption, and the fact that the world 
already produces far more food than is required to feed the global population, 
the world is being frightened by some of the multi- nationals and mainstream 
international research and development agencies who continue to push for the 
destructive industrial version of the Green Revolution agriculture. Many of 
our universities too, in all continents, have been far too slow when it comes to 
offering solutions in terms of sustainable production systems. One only has to 
watch the Massive Open Online Courses (MOOCs) being offered by some of the 
universities in Europe and America to appreciate how far behind the global edu-
cation system is in preparing and equipping new graduates with the knowledge 
and management skills required to implement and sustain the required policy and 
institutional support to mainstream CA systems. Business as usual still prevails in 
nearly all our agricultural institutions, but we now have a fantastic opportunity 
to promote a radical transformation of agricultural land use systems worldwide.

Other Innovations

There are other innovations that are coming on stream through precision farming 
which is opening up possibilities for more efficient nutrient management, e.g., 
the 4R nutrient management approaches –  right fertilizer, right rate, right place, 
and right time –  as well through better understanding of the co- evolved rela-
tionship between the plant rhizosphere and soil microorganisms that can influ-
ence nutrient availability and uptake. Similarly, more efficient pest (weeds, insect 
pests, pathogens) management is becoming possible which brings together the 
power of CA along with precision farming and with co- evolved relationships 
between plants and natural enemies of pests such as those in push– pull systems, 
and also with a co- evolved relationship between the plant rhizosphere and soil 
microorganisms that can influence gene functions that can influence whether 
the plant is going to be attacked by pathogens or not. Allelopathy is another 
area which is offering opportunities for innovations that can help manage weeds 
without relying on herbicides.

Needs and Opportunities

It is clear that there is an urgent need and opportunities to facilitate and support 
the spread of CA. The following needs and opportunities exist globally, but par-
ticularly for the South Asia region, to accelerate the uptake and spread of CA:

 • The science underlying the paradigm of CA needs to be established as a 
regular part of concern for managing a vibrant and innovative knowledge 
system that can help to generate new knowledge, new technologies, and 
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associated practice, and new enabling social and institutional arrangements 
to support and sustain the spread and widest benefit sharing from the appli-
cation of all rainfed and irrigated CA systems. This must include the urgent 
realignment of research, education, and development institutions, public 
and private, towards the adoption and spread of CA.

 • The damage that has been caused by modern and traditional tillage- based 
agriculture worldwide must not be underestimated. The rate of land deg-
radation and abandonment must be stopped and reversed, so that they are 
restored based on the application of the principles of CA.

 • There are exciting opportunities for the agriculture sector as a whole to deliver 
its full range of ecosystem services –  supporting, regulating, provisioning, and 
cultural –  through CA- based agricultural land and landscape management. 
Ecosystem services are also societal services, and farmers, land managers, 
food and agricultural service sectors, and policy and supporting institutions, 
all have a duty and a responsibility to minimize or avoid the degradation of 
agro- ecosystems and ecosystem services and to restore them to their eco-
logically desirable state.

 • There is an opportunity for everyone, but particularly the youth, to feel 
excited and confident about the future of food and agriculture, and land use 
management in general, and their role and responsibility in particular, in 
creating a rewarding and ethically responsible post- modern food and agri-
culture sector.

 • There is a need and to promote incentive- based agricultural development 
and stop subsidy- based agricultural development strategies. Farmers should 
be awarded and rewarded for adopting systems and practices of CA that pro-
vide ecosystem services to society.

 • There is a need to promote the formation of national CA associations to 
promote and establish farmer- driven processes of adoption and spread of CA, 
and to access and attract the institutional support required to maintain a 
competitive and innovative CA- based food and agriculture sector.

 • There is a need and an opportunity to create multi- stakeholder national 
platforms for CA development and dissemination in the Asia region and 
to facilitate information sharing and communication, and to monitor CA 
adoption, its contribution to agriculture and rural development, and to pro-
mote the mainstreaming of CA on farms and in all the supporting public, 
private, and civil sectors.

For Whom Are We Working? Whose Voices Do We Represent and 
Amplify? Is There a Future for the Youth in Agriculture?

The question must be asked: For whom are we working? Clearly, the answer is 
first and foremost, we are speaking for sustainable development of the national, 
regional, and international food and agriculture system. This means we are 
working for all the farmers, men and women, small- scale and large- scale, and rich 
and poor. However, in the development context, we must represent the voices 
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and the needs of the poor smallholder farmers, their households and livelihoods, 
and their well- being. We must also represent the voices of the urban poor who 
cannot afford to buy food because they are not gainfully employed. Additionally, 
we must represent the global agricultural land use community in order that all 
agricultural land use worldwide is eventually brought under sustainable use and 
management.

CA systems have shown that the ecological foundation of sustainability in 
agricultural land use can be provided by CA systems for all farmers, in all land- 
based agro- ecologies to improve their biological, economic, and environmental 
performance. For poor farmers and their families in particular, CA systems offer 
something uniquely special –  the ability to achieve sustainable production 
intensification with minimum or no purchased inputs to build local food security, 
strengthen livelihoods, and restore the flow of ecosystem services. They make 
their agriculture climate- smart and offer confidence and hope for the future for 
themselves and for their children, many of whom may not remain in farming 
once they have had an opportunity to educate themselves.

Ultimately, no amount of ecological sustainability in a production system 
such as CA can withstand the unlimited demand for food and non- food com-
modities placed upon the global land resource base. The world already produces 
enough food to feed more than its current population, but a significant propor-
tion of it is wasted or fed to livestock. Thus, in general, mainstream approaches 
to agricultural assessments regarding national and international food security 
appear to be simplistic and limited in scope. As a result, they are unable to 
identify and address the root causes of the damage caused to land resources, 
the environment, and human health by the current agricultural paradigm. Such 
assessments are also decoupled from the human and ethical consequences of 
the demands and pressures placed upon agricultural production and farmers by 
the food and agriculture system as a whole which has continuously failed to 
achieve global food security for all. A number of recent analyses show that the 
global food system is broken, along with a number of other global chronic crisis. 
Increasingly, it appears that the overly dominant global capitalist economic 
system and the associated multi- national corporate sector that is driven by the 
goals of infinite growth for profit in a finite planet is not capable of solving the 
global burden of crises. It is not capable of protecting and meeting the food, seed, 
and land sovereignty needs of the smallholder farmers worldwide, nor is it cap-
able of meeting the human nutrition and health needs of society and the planet 
(Kassam and Kassam 2020).

Prospects for a Brighter Future

In light of the above, we take the view that agriculture and all the related sectors 
have a bright future. The global transformation of agricultural land use towards 
CA gives us hope and confidence that we can establish and maintain develop-
ment pathways for sustainable production intensification and sustainable land 
management. The really exciting part is that we have rediscovered that this can 
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be done provided we respect and understand how nature works in its ecosystems 
and how we can build upon this understanding of sustainable land- based agro- 
ecosystems everywhere for all. Therefore, there is much to be excited about the 
for future of agriculture and land management broadly defined, and this is particu-
larly relevant for youths, males and females, who can and must consider farming, 
agricultural sciences, and all the agricultural and land management professions to 
be respectable areas of opportunity to serve personal, national, and international 
ambitions.

It is particularly encouraging that the CA Global Community at the 8th World 
Congress on Conservation Agriculture set a notional goal of transforming 50% of 
the global cropland area into CA by 2050 (WCCA 2021). They have suggested 
a global plan of action to be developed by the CA Community at the national 
and regional level calling for all stakeholders to become involved. We therefore 
commend everyone, irrespective of whether they are in the public sector, private 
sector, or civil sector, whether they are plant breeders, agronomists, or plant pro-
tection professionals, agricultural engineers or crop physiologists, microbiologists 
or economists, rural sociologists or anthropologists, or irrigation and water man-
agement experts or those keen on gender, communication, ecosystem services, or 
climate change, or any of the food and agricultural and land use management dis-
ciplines, to respond fully and with confidence to the potentials and opportunities 
offered by the new agricultural paradigm of CA. Farmers, large and small, rich 
and poor, men and women, throughout the world are seizing this opportunity. 
They, more than anyone else, deserve your help, support, and trust because the 
future of our planet and of humankind is in their hands. How well they perform 
their custodian role and feed the population of the future will depend on how 
much we all care for them and how much we do to give them an effective voice 
in sustainable development.

There is a hopeful and exciting future emerging in post- modern agriculture 
based on the CA paradigm. Solutions are now available to manage agriculture 
sustainably and anyone who wishes to serve the farmers and agriculture develop-
ment must understand and protect its ecological foundations. This also applies to 
farmers who wish to farm sustainably, and to those who wish to take care of the 
agricultural land resources and the environment on behalf of society and nature. 
This is the grand challenge to the education and research system globally, to 
ensure that new knowledge for innovative technologies is generated and trans-
mitted appropriately to future generations. Equally important will be the need to 
maintain an enabling policy environment that will help to transform and build 
institutions and human capacity for innovations to serve the food and agriculture 
sector broadly defined.

Where to Look for More Information?

A general source of information on CA is the FAO website (www.fao.org/ conse rvat 
ion- agri cult ure) and also the websites of the European Conservation Agriculture 
Federation (ECAF) (https:// ecaf.org/ ), the Africa Conservation Tillage Network 

 

 

http://www.fao.org
http://www.fao.org
https://ecaf.org


CA for Sustainable Intensification 17

(ACTN) (www.act- afr ica.org/ ) and the Conservation Agriculture Alliance for 
Asia and Pacific (CAAAP) (www.caa- ap.org/ ). More information regarding the 
development of CA systems globally can be found in books and journals, and on 
websites of national and regional CA organizations.

Books include Goddard et al. (2006), Baker et al. (2007), FAO (2011, 2016), 
Jat et al. (2014), Farooq and Siddique (2014), Chan and Fantle- Lepczyk (2015), 
and Dang et al. (2020). Nationally oriented information on CA development 
is available for several countries including Australia (Crabtree 2010), Canada 
(Lindwall and Sonntag 2010), Brazil (Junior et al. 2012; de Freitas and Landers 
2014), Argentina (Peiretti and Dumanski 2014), and United States (Lessiter 
2018).The three- volume book on Advances in Conservation Agriculture (Kassam 
2020a,b, 2021) is a global source of information on Systems and Science (Volume 
1), Practice and Benefits (Volume 2), and Adoption and Spread (Volume 3).

Lessiter (2011) provides a narrative on 40 legends of the past in no- till farming 
in North America. The International Soil and Water Conservation Research 
published a special issue on Pioneers in soil conservation and Conservation 
Agriculture which provides good information on the adoption of CA in several 
countries (Dumanski et al. 2014).

The Proceedings of World Congresses on CA are a good source of historical 
and current information on CA research and adoption. Similarly, proceedings 
of Africa Congresses on CA provide good information on research and develop-
ment work in Africa (Kassam et al. 2017; Mkomwa and Kassam 2021). Websites 
of national and regional CA associations are a good source of CA information on 
adoption and spread as well as on research.

Conclusion and Future Outlook

CA systems are leading to a paradigm change in the food and agriculture system 
globally. The resulting impact is the opening up of new and more profitable ways 
of managing agricultural lands and improving livelihoods, investing in agricul-
tural land for commercial purposes, and enhancing and being rewarded for eco-
system services. Agriculture is no longer the sector to employ the poor and the 
uneducated. It is a place where greater technical and managerial skills are going 
to be demanded in order to save the human race and the planet. Agriculture has 
become a calling for many, especially the youth, to reengage and double their 
efforts to achieve and sustain food security, address agricultural land degradation, 
achieve more from less, and respond to climate change. We must concentrate on 
promoting all aspects of CA for the benefit of farmers, wherever he or she may be 
farming, however poor or rich, small or large, as well for society and the planet. 
All disciplines and people have a role to play because the option and opportunity, 
which we all must seize, is at the level of a paradigm change –  like moving from a 
flat Earth mindset to a round reaching mindset. All aspects of the food and agri-
culture systems must be realigned to the new paradigm over the coming decades 
across the world to achieve an attainable target of 700 M ha of cropland under 
CA (50% of cropped area) by 2050.
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