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Abstract: Soil health is a term used to describe the general state or quality of soil, and in an agroe-
cosystem, soil health can be defined as the ability of the soil to respond to agricultural practices
in a way that sustainably supports both agricultural production and the provision of other ecosys-
tem services. Conventional agricultural practices cause deterioration in soil quality, increasing its
compaction, water erosion, and salinization and decreasing soil organic matter, nutrient content,
and soil biodiversity, which negatively influences the productivity and long-term sustainability of
the soil. Currently, there are many evidences throughout the world that demonstrate the capability
of conservation agriculture (CA) as a sustainable system to overcome these adverse effects on soil
health, to avoid soil degradation and to ensure food security. CA has multiple beneficial effects on the
physical, chemical, and biological properties of soil. In addition, CA can reduce the negative impacts
of conventional agricultural practices on soil health while conserving the production and provision
of soil ecosystem services. Today, agricultural development is facing unprecedented challenges, and
CA plays a significant role in the sustainability of intensive agriculture. This review will discuss the
impact of conservation agricultural practices on soil health and their role in agricultural sustainability.

Keywords: conservation agriculture; indicators; soil health; soil quality; sustainability

1. Introduction

Soil is the surface material that covers most land, containing inorganic particles and
organic matter and supplying structural support to agricultural plants, being thus their
source of nutrients and water. Agriculture today faces a double-sided challenge—on the
one hand, the urgent need to provide food to a growing population, and on the other hand,
to do so in a sustainable way [1], without compromising the provision of ecosystem services
by the soil, such as carbon sequestration, nutrient supply, and water cycle regulation.

Sustainable agriculture is a difficult concept to define, since the environmental, social
and economic impacts of agriculture are diverse and interact with one another [2]. In
general, it can be stated that sustainable crop production systems are those that respect the
environment, improve efficiency in the use of resources and promote human well-being [3].
They are those food production practices that integrate ecological, biological, physical
and chemical principles, without harming the environment, as opposed to unsuitable
agricultural practices [4].

Soil health is the state of the soil in relation to its potential ability to maintain its
biological productiveness, strengthen environmental quality, and foster plant and animal
health. Sustainable agriculture can be defined as agriculture that can be practiced in
a productive and profitable way without affecting the health of the soil [5]. Figure 1 shows
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the main functions exerted by soil. Today, soil health is threatened all over the world.
Some of the main threats to soil are erosion, compaction, salinization, nutrient depletion,
pollution, and/or overgrazing [6].
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Figure 1. Main functions of soil (Adapted from [7]).

On the other hand, land degradation and deterioration of soil fertility are two of
the main causes of the decline in the agricultural productivity of agroecosystems. The
intensification of agriculture deteriorates the soil quality, and its negative effects have
increased in the past few decades. The aim of conventional agriculture is to produce the
highest possible yield of crops by the application of synthetic products, energy inputs, and
a number of other industrial products. Biodiversity, soil fertility, and ecosystem health are
compromised under conventional systems.

The intensive use of machinery and chemical inputs increases compaction, erosion,
and soil salinization and decreases the content of organic matter and soil nutrients, which
negatively influences the soil’s productivity and long-term sustainability. The degradation
of agricultural soil under different cropping systems is a socioeconomic and environmental
problem that must be urgently addressed, particularly considering that climate change is
expected to have a strong negative impact on food production, as was defined by Smith
and Gregory [8]. CA practices are a useful strategy for climate change mitigation and
adaptation [9,10]. CA allows slowing down or reducing greenhouse gas emissions and im-
proving carbon sequestration in the soil [11]. The application of CA practices can improve
the properties of soil, increasing its resilience to drought, and improving water and nutrient
use efficiency. These improvements are essential to maintain the sustainability of agricul-
tural production and mitigate the impacts of climate change on food production [12,13].
To reduce these negative impacts of agricultural systems and guarantee their long-term
sustainability, management systems that improve or conserve soil quality are crucial [14].
To this end, agronomic practices of conservation agriculture (CA) are promoted. Figure 2
shows the environmental impacts of conventional agriculture and the benefits of CA on the
soil system.
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In this review, we examine and describe advancements in the implementation of
conservation agriculture measures as a sustainable system, focusing on their impacts on
soil health and its role in supporting the suitable management of land, while fostering
food security.
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2. Conservation Agriculture

The Food and Agriculture Organization (FAO) defines CA as an agroecosystem man-
agement system to ensure food security and improve profits while preserving environmen-
tal resources.

Food security, as defined by the United Nations’ Committee on World Food Security,
means that all people, at all times, have physical, social, and economic access to sufficient,
safe, and nutritious food that meets their food preferences and dietary needs for an active
and healthy life. Currently almost 800 million people do not have access to enough food,
more than 2 billion people experience deficiencies in key micronutrients, and approximately
60% of people in developing countries are food insecure [15]. In addition, it is foreseeable
that in the coming decades, the growth of the world population, climate change and
environmental impacts will aggravate the problem. The magnitude of the problem globally
means that food security is related to all of the Sustainable Development Goals (SDGs) of
the United Nations.

Conservation agriculture is an agroecosystem management approach that can be
considered as one of the main ways to achieve the sustainability of agriculture, allowing
the goal of greater protection while protecting the environment [16]. CA emerged in the
1930s in the USA to combat soil degradation due to water and wind erosion [17]. CA is
characterized by the application of three interlinked principles implemented with locally
adapted practices, together with other complementary agricultural practices [18]. These
three principles are:

(1) Continuous minimum mechanical soil disturbance;
(2) Permanent soil organic cover with crop residues and/or cover crops;
(3) Species diversification through varied crop rotations, sequences, and associations.

The concomitant application of these three individual principles constitutes the classi-
cal definition of CA. However, many smallholder farmers cannot apply these three rules at
the same time, and CA defined as a fixed package is not often adapted to the particular
conditions of small farms. The application separately or in tandem of these components has
been shown to have potential benefits, as was reported by many authors [19–21]. However,
some of these authors argue that it is necessary to move from the strict definition of CA as
a fixed set of three components to talking about conservation practices, which encompass
a variety of options for sustainable agricultural intensification [22,23].

CA constitutes the central nucleus of FAO’s new sustainable agricultural intensifica-
tion strategy [24]. According to the FAO, CA is applicable to all “agricultural landscapes
and land uses with locally adapted practices”, which implies a series of economic, agro-
nomic, and environmental benefits. In this sense, CA is a viable option for the sustainable
intensification of agricultural land and obtaining profitable production [25,26].

In 2015/2016, CA was practiced worldwide in 180 M ha (about 12.5% of the total
global cropland), an increase of 69% compared to 2008/2009. This growth has been greater
in recent years. From 1999 to 2003, the area under CA increased by an average of 8.3 M
ha per year [27]. The adoption of CA is not uniform in all regions or among all types of
farms. It is generalized in large farms in North America, Australia, and Brazil. In contrast,
adoption by smallholder farmers accounts for only 0.3% of the farmland worldwide under
CA [28]. Globally, the total CA area is still comparatively small in relation to the total arable
land using conventional tillage (CT). As pointed out by Kassam et al. [27], it is expected
that large areas of agricultural lands in Asia, Africa, Europe, and Central America will
adopt CA in the coming years. The low adoption of CA in developing countries can be
attributed in part to the fact that it is a complex system, coupled with insufficient technical
knowledge and capacity of farmers. In this context, political and institutional support is
essential through incentives for farmers to adopt CA practices and technical support from
experts [21].

To increase the implementation of CA techniques and the benefits derived from it,
site-specific practices must be designed [22,25,29]. An important constraint is the limited
availability in most developing countries of affordable and suitable machinery for no-
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till seeding, especially for small- and medium-scale farmers [30]. The development and
availability of equipment that allows for sufficient germination of crops planted in no-
tillage systems, with mulch in the soil, and that can adapt to small- and large-scale farmers
should be improved [31]. Therefore, CA is an alternative to enhance productivity and
food security, while preserving natural resources and reducing the negative externalities of
traditional agricultural practices [32]. Moreover, the CA system can significantly improve
the resistance to changing climate conditions in cropping systems [33,34]. In this context,
conservation tillage is applied as an alternative to CT in order to alleviate water erosion
impacts, reduce production costs, and maintain soil quality [35,36]. The positive effects of
minimum tillage on soil quality, environment, and soil water conservation as compared
to non-tilled soils in rainfed plantations were highlighted by Jacobs et al. [37] and Busari
et al. [38]. Table 1 summarizes the main economic/agronomic and environmental benefits
derived from CA practices.

Table 1. Main economic/agronomic and environmental benefits generated by conservation agriculture.

Economic/Agronomic Environmental

Labor and fuel savings Lower CO2 emissions
Cost and time savings Erosion and surface runoff reductions
Yield gains Improvement of soil properties
Reduced fertilizer expenditures Increase in soil biodiversity
Weed control Increase in microbial activity
Lower irrigation needs Less pollution of downstream water
Lower risk of pest and disease outbreaks

Adapted from [31,39].

The cover cropping system as a technique of CA is an essential part of crop rotations
in many regions worldwide, dispensing a wide range of benefits and ecosystem services
such as N supply and retention [40], weed control [41], soil nematode control [42], water
retention [43], and mitigation of nitrate leaching [44]. In addition, in the long term, cover
crops can build up soil organic carbon and N [45,46] and lower net N2O and CO2 emissions,
thus contributing climate change mitigation services [47]. Cover cropping can improve
soil organic carbon stocks and potentially promote climate stability and food security, as
was reported by Minasny et al. [48]. Similarly, according to Garcia-Tejero et al. [49], who
examined Mediterranean rainfed agroecosystems, the use of CA techniques to enhance soil
water management and soil carbon storage is vital.

On the other hand, Daryanto et al. [50], in a global quantitative synthesis of ecosystem
services from cover crops, reported the suitability of their implementation. Despite the
potential benefits of cover crops to improve soil conditions, this measure can add to the
complexity of farming operations. According to Clark et al. [51], in the case of hairy vetch
(Vicia villosa Roth.), which can provide a considerable amount of N demanded by the
subsequent crop (maize), a late cover crop harvest is recommended because this allows
for higher N accumulation in their biomass and for better synchronization of N release
from the decomposing cover crop and maize N uptake [52]. In contrast, the early harvest
of the cover crop may be suitable in circumstances where the rainfall amount is low and
the depletion of soil moisture reserves by cover crops is a drawback [53].

The CA practices result in soil quality improvement only gradually, and benefits come
about only with time. According to Stagnari et al. [54], between 3 to 7 years may be needed
for all of the benefits to take hold. Therefore, because long periods are often required before
changes in the soil can be detected, studies of CA must be based on long-term research
and trials. This transition phase is crucial to ensure the success of the adoption of CA
practices. In the initial transition years, problems can arise, such as more difficult weed
management [55], lower productivity [56], etc., which can discourage farmers and lead
them to abandon these practices.
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3. Soil Health

Soil has been receiving increasing political and scientific interest in recent times, given
its capability to provide various ecosystem services that contribute to the United Nations
Sustainable Development Goals and to the European Union Green Deal [57]. Concepts
such as soil health and soil quality are used to refer to this soil capability. The terms soil
health and soil quality are often used interchangeably. In fact, the distinction between the
two concepts is not clear. According to Laishram et al. [58], soil health refers to a broader
concept—the capacity of soil to function as a living system to support plant, animal, and
human life. Conversely, soil quality concerns the capacity of a specific kind of soil to sustain
a particular use, such as crop production. Bonfante et al. [57] established the following
distinction between the two terms: “Soil health is the actual capacity of a particular soil to
function, contributing to ecosystem services”, while “soil quality is the inherent capacity of
a particular soil to function, contributing to ecosystem services”. Both concepts, soil health
and quality, are used to monitor soil status, analyze the influence of soil management on
agricultural sustainability, and direct decision making to avoid degradation [4]. Figure 3
summarizes the management principles and the benefits of soil health.
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Although the concept of soil health emerged in the early 2000s, it is still evolving. It is
not an easy concept to define, since soil is an extremely complex ecosystem, as was stated
before. There are numerous definitions in the literature. According to Doran and Zeiss [14],
soil health is “the capacity of soil to function as a vital living system, within ecosystem
and land-use boundaries, to sustain plant and animal productivity, maintain or enhance
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water and air quality, and promote plant and animal health”. The U.S. Department of
Agriculture (USDA) [59] defines soil health as “the continued capacity of soil to function
as a vital living ecosystem that sustains plants, animals, and humans”. Yang et al. [60]
defined it as “the capacity of soil to function, within ecosystem boundaries, to sustain crop
and animal productivities, maintain or enhance environmental sustainability, and improve
human health worldwide”.

According to Kibblewhite et al. [5], healthy agricultural soil is “capable of supporting
the production of food and fiber, to a level and with a quality sufficient to meet human
requirements, together with continued delivery of other ecosystem services that are essen-
tial for maintenance of the quality of life for humans and the conservation of biodiversity”.
According to Wang and Hooks [61], soil health can be defined as having six main character-
istics: (i) high biological diversity, (ii) high community stability that can provide resilience
and self-recovery to chemical and biological disturbance, (iii) the ability to maintain the
integrity of nutrient cycling and energy flow, (iv) the suppression of multiple pests and
pathogens, (v) the ability to improve plant health, and (vi) the maintenance of water and
air quality.

All of these definitions are conceptual, since they attempt to define what healthy soil
is without defining how it is measured. The operational definitions establish a series of
key indicators of soil health. It is essential to include indicators of physical, chemical, and
biological properties when assessing soil health, as was stated by Bünemann et al. [62].
Ideally, indicators of soil health should be related to relevant soil processes and sensitive to
changes in management practices and environmental conditions [60]. There is no universal
set of ideal soil characteristics, and their interpretation is always context-dependent [63].

Finally, the concept of soil health can be approached from a “reductionist” or “inte-
grated” point of view. The first is based on estimating the state of the soil using a set of
individual indicators of specific soil properties: physical, chemical, and biological. The
integrated approach recognizes the complexity of the soil system and the existence of
interactions between the different properties and processes of the soil; therefore, soil health
is more than simply the sum of a set of specific indicators [5]. According to this integrative
approach, the indicators selected to establish soil health must be the result of interactions
of the biota with the physicochemical properties of the soil [64]. Thus, healthy soils are
crucial for the integrity of agricultural lands to maintain, or recover from perturbations
resulting from, agricultural operations, particularly those regarding soil management.

Soil Health Indicators

Knowing and understanding the state of soil health is essential to guarantee the
sustainable management of agroecosystems. Soil health is a complex functional concept
and cannot be measured directly in the field or laboratory; it can only be inferred indirectly
by measuring soil indicators [65]. These indicators are measurable soil parameters that
influence soil function and ecosystem services [66].

In general, soil health indicators can be classified as physical, chemical, or biological,
although these categories are not always clearly delimited, since there are many soil proper-
ties that result from the interaction of multiple processes [67]. Evidently, no single indicator
can encompass all processes and parameters of soil health, nor is it feasible (or necessary)
to measure all soil attributes. Therefore, it is necessary to select a minimum dataset (MDS)
including physical, chemical, and biological parameters of the soil. Establishing a minimal
dataset, representative of total data, minimizes costs and efforts in soil health assessment.
Table 2 shows an MDS for soil health assessment with the indicators more commonly used.

The desired features of soil health indicators are that they be: (i) easy to measure;
(ii) measurable with practical, rapid, and inexpensive measurement methods; (iii) sensitive
to variations in management; (iv) relevant to soil ecosystem functions; and (v) informative
for management [14,68].
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Table 2. Minimum data set (MDS) for soil health assessments.

Key Soil Health Parameters Reason

BIOLOGICAL
N mineralization Capacity of the soil to supply N for crop growth
Microbial biomass Source and/or drain of C and nutrients

Microbial activity Related to the availability of nutrients and
biogeochemical cycles

Soil respiration Indicator for biological activity and organic matter
CHEMICAL

Organic carbon Important for soil structure and fertility, and
water-holding capacity

Bio-available nutrient Potential of nutrients to support plant development
pH Availability of nutrients
CEC Soil’s availability to supply plant nutrients
EC Related to soil structure, infiltration and crop development

Potential pollutants Potentially harmful for plant growth and plant–soil
system health

PHYSICAL
Penetration resistance Related to infiltration capacity and erosion and runoff processes
Aggregation Indicator of soil structure and erosion protection
Infiltration Indicator for erosion and runoff
Depth to hardpan Roots growth potential
Texture Important for soil water and nutrient transfer and retention
Water-holding capacity Sufficient moisture to support plant growth

CEC, Cation exchange capacity; EC, Electrical conductivity. Compiled by authors from different sources [67,69,70].

Several methods can be used to define an appropriate MDS, including statistical tools
(principal component analysis, multiple correlation, etc.), uncertain sets, expert opinion,
and farmer/local knowledge [66]. Once the MDS has been established, linear and/or
non-linear techniques can be applied to interpret the soil indicators. The non-linear scoring
method is more representative of system function than the linear method but is more labor-
intensive and requires more knowledge [71]. When individual indicators are scored, they
can be integrated into a general index, which can be used to guide management decisions
toward promoting the long-term sustainability of the soil resource [72]. These indices have
an integrating character, combining multidimensional data on the physical, chemical, and
biological properties of soil into a one-dimensional measure of soil health [59]. Many soil
health indices can be found in the literature: additives, weighted, decision support system,
integrated quality index, Nemoro quality index, etc. [71,73].

The benefits of using these indices are clear—they provide a unique value of soil health,
which allows direct comparison between different soils [39]. They are also a decision tool
that can help identify the most sustainable management practices [71]. However, they also
have drawbacks. For example, the diversity of existing methodologies to build this one-
dimensional index means that the resulting value for this index may vary between methods,
making it difficult to interpret the results [39]. Furthermore, their use can sometimes give
an overly simplified interpretation of the response of the complex agroecosystem to natural
or anthropogenic disturbances [60].

4. Impact of Conservation Agriculture on Soil Health

CA measures have been put forward to restore or maintain major soil functions (C
cycling and transformation, nutrient cycling, and soil structure maintenance), performing
well in terms of crop yield, economic return, greenhouse gas emission mitigation, biodi-
versity conservation, and soil health improvement. Contrarily, there is an almost general
consensus that certain practices of conventional agriculture to increase agricultural produc-
tion have detrimental effects on the health of the soil. CA is proposed as an alternative to
conventional management to ensure sustainability in the provision of ecosystem services
through the soil [74], which can improve soil properties and associated processes [13,34].
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The total impact of CA systems on soil health varies from location to location and is depen-
dent on site-specific soil and climatic conditions, the amount of time operating under a CA
system, features of CA practices (types of cover crops, intensity of the crop rotation, etc.),
and the training and experience of farmers [34,70,75].

4.1. Influence on Soil Physical Properties

Traditional agriculture through CT provokes a significant alteration of physical soil
properties, such as degradation of the structure, compaction problems, soil bulk density,
soil penetration resistance, etc. CA is able to reduce these negative effects of CT. Some of the
most important parameters of soil physical health are described in the following sections.

4.1.1. Soil Structure

Soil structure is an important parameter in the sustainability of agroecosystems, due to
its role in physical, chemical, and biological dynamics of soil, and determines its resistance
to degradation by water erosion. Aggregate stability against different stresses (rainfall,
tillage, etc.) is a useful measure to determine soil structural stability.

According to Bronick and Lal [76], soil structure can be significantly modified through
management practices. Soil structural development can be enhanced by management
systems that reduce soil disturbances, increase organic matter inputs, increase plant cover,
and improve soil fertility. In this sense, one of the major negative impacts of conventional
long-term tillage is the deterioration of the soil structure due to the reduction in soil organic
matter [34].

There is a positive correlation between the mean weight diameter of soil aggregates
and total organic carbon content [77,78]. The soil organic matter (SOM) promotes macro-
aggregate formation; meanwhile, soil aggregates improve the physical protection of organic
matter [79]. Higher aggregate stability under CA is the result of the interaction of various
factors: (i) the retention of organic residue on the soil surface protects soil aggregates from
raindrop impact and avoids soil compaction [80]; (ii) decomposing organic matter increases
the aggregation process [81]; (iii) no soil disturbance increases fungal populations and
the persistence of root networks that encourage the stability of the aggregates [82]; and
(iv) reducing soil disturbance in CA systems allows the development of a more stable soil
structure than in CT systems [83]. Numerous studies have reported an improvement in
the stability of soil aggregates due to the application of CA practices [84–86]. In a study
in Zambia, CA practices with residue retention and crop rotation showed higher aggre-
gate stability (41–45%) compared with conventional ploughing practices (24%) [87]. This
improvement in the stability of the aggregates is a function of the type of soil. Thus, Nya-
mangara et al. [88] reported a greater increase in the stability of the aggregates due to CA
practices in soils high in clay (18.1%) than in soils low in clay (9%), compared to CT. The
increase in aggregate stability due to CA practices is greater in the topsoil layer, decreasing
with depth. Zhang et al. [89] reported a greater increase in the stability of soil aggregates in
the surface layer (0–20 cm) than in the subsurface layer (20–40 cm) in treatments with straw
return compared to treatments without straw. A study by Eze et al. [90] with a long-term ex-
periment found that maize-based CA systems result in significant changes to soil hydraulic
properties that correlate with improved soil structure. The findings showed increases of
5–15% in total porosity, 0.06–0.22 cm/min in Ksat (saturated hydraulic conductivity), 3–7%
in fine pores for water storage, and 3–6% in plant-available water capacity. Furthermore,
according to these authors, the maize monocrop under CA practices had an impact on soil
hydraulic properties comparable to that of the maize–legume associations.

These improvements in the soil structure, due to CA practices, promote other beneficial
effects on the soil, such as higher infiltration rates, greater protection against erosion,
increased water-holding capacity, improved habitats to support microbial activity, etc.
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4.1.2. Bulk Density

The bulk density is one of the most common physical parameters to assess the impact
of tillage and crop residue on agricultural soils, as it is an indicator of the soil’s compaction
and reflects the soil’s ability to function in terms of structural support, water and solute
movement, and soil aeration. High bulk densities cause root impedance and lead to poor
crop emergence. There is no consensus regarding the effect of CA on soil bulk density, as
some studies reported a higher soil bulk density with CA compared to CT [91,92], while
others have not found significant differences [86,93] or reported lower soil bulk density in
CA in comparison to CT [88,94]. These differences in bulk density in the different trials
may be due in part to the typology of the farm. Greater topsoil bulk density recorded
in studies on large farms in the USA or Australia can be the result of compaction due to
heavy no-till machinery used, but this does not occur in smallholder farms in developing
countries, where cultivation is performed manually or with animal draft power [95].

In a global meta-analysis, Li et al. [96] claimed an average increased bulk density of
1.4% in a no-tillage (NT) system with residue retention compared with CT. However, they
also concluded that the greatest soil compaction value in conservation tillage practices was
below the threshold value that limits plant growth.

According to Mondal et al. [97], no significant differences in bulk density were found
in soil depth up to 15 cm after the implementation of CA. However, a greater bulk density
was determined in a traditional rice–wheat cropping system than in treatments with CA at
soil depth of 15–30 cm. Generally, bulk density was greater for CA than CT for soil depths
within the plow layer [13,98]. However, in the top few centimeters in NT, the accumulation
of crop residues and soil organic carbon (SOC) on the soil surface led to a lower bulk
density [99]. Sometimes, the amount of residue is not enough to limit the increase in
bulk density under no-tillage systems. In these cases, the residues can be shredded, thus
increasing the covered area and mitigating the hardening of the soil [98].

The effect of conservation tillage systems (minimum/reduced tillage and no tillage)
on the apparent density of the soil is not immediate; it is necessary that a few years elapse
from the conversion from CT to reduce it [100]. The crop residue incorporation into the
soil in conservation tillage plays a pivotal role in decreasing bulk density. In this sense,
Nyamadzawo et al. [101] attributed lower bulk density in CA systems to the presence of
higher levels of organic matter, which tends to improve soil structure and increase porosity.
In contrast, Mondal et al. [102] reported a similar bulk density under CT and NT systems.

According to Islam and Reeder [103], soil bulk density at 0 to 15 and 15 to 30 cm
depths under long-term NT decreased significantly compared to CT. At 0 to 15 cm depth,
the greatest difference compared to CT occurs with 35 years of continuous zero tillage. The
bulk density at depths of 15–30 cm decreased linearly over the years of NT. This decrease
in bulk density is associated with an increase in total soil porosity. In a long-term study of
maize (Zea mays L.) based crop rotations, the bulk density under CA practices (zero tillage
and permanent raised beds) was reduced by 4.3–6.9% in soil depths of 0–30 cm compared
with CT. In deeper soil layers (30–60 cm), differences between management systems were
non-significant [104].

4.1.3. Surface Seal and Soil Crust

Bare soil in conventional systems leads to increased surface seal and crust formation
due to the lack of protection against the impact of raindrops. The impact of rainfall causes
the breakdown of soil aggregates and the release of finer particles, which are redistributed
by the near-surface and fill the most superficial pores. This process causes sealing and sur-
face waterproofing, decreasing water infiltration and, consequently, enhancing the runoff
and soil loss [105]. Surface sealing has a negative impact on the physical characteristics of
soil, which ultimately affects crop yield [106].

The presence of crop residues in CA practices can help protect the surface of the
soil from raindrop impact and prevent surface sealing. In structurally unstable soils or
regions where crusting is a serious problem, the maintenance of adequate surface cover is
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paramount to avoid surface sealing and crust formation [107]. When CA is practiced in
the absence of effective soil mulch cover, surface sealing may occur. Usón and Poch [108]
showed that reduced tillage did not reduce crust formation in Mediterranean conditions,
due to the difficulty of establishing an effective ground cover. In certain circumstances, the
quantities of biomass produced and retained in CA systems can be insufficient to avoid soil
crusting and compaction [109], but increasing residue above a threshold can have no effect
because of sufficient raindrop impact interception [110]. According to Page et al. [111], the
surface sealing, due to the inadequate residue cover and the lack of tillage, particularly in
drier regions, can be one cause of yield loss in CA systems. In situations where little surface
cover from crop residue is available, the creation of surface roughness using strategic tillage
is a viable option to break soil crusts, improve water infiltration, and reduce runoff [112].

Thus, a permanent soil surface cover by crop residues significantly reduces surface
sealing [113]. Various studies report on the preventive effect against surface sealing in CA
exerted by crop residues on the soil surface, protecting the soil from the direct impact of
raindrops [114,115]. In this sense, Castellanos-Navarrete et al. [84] reported that in CA
systems, soil crusts were not present on the soil surface; however, soil under CT with poor
aggregate stability showed soil crust formation.

4.1.4. Soil Compaction

Soil compaction is a form of physical degradation that consists of the densification of
the soil, which often results in the destruction of the soil structure; a reduction in biologi-
cal activity, porosity, and permeability; an increased risk of erosion; a restriction on root
development; and, consequently, decreased crop performance. On farmland, the traffic
of heavy agricultural machinery is the main cause of soil compaction, and its magnitude
increases with the number and intensity of tillage operations and when these are carried
out in inappropriate soil moisture conditions. The influence of the machinery is so impor-
tant that “controlling in-field traffic” is considered a component of CA. Recommended
practices include bed planting that reduces compaction by confining traffic to the furrow
bottoms [116], or the application of fertilizers at the time of seedbed preparation or seeding
to reduce machinery transit [117].

In the long term, tillage promotes soil compaction and the formation of a plough
pan in the sub soil. Crop rotation, cover crops, and the addition of crop residues in
CA systems can reduce soil compaction. Mondal et al. [118] reported a reduction in the
subsurface compaction by CA systems, with a soil penetration resistance significantly less
in the 15–30 cm layer under CA. This can have a positive impact on root morphology,
which can contribute to increased crop yield. According to Hamza and Anderson [119],
increasing the SOM through the retention of crop residues and crop rotations that include
plants with deep, strong taproots can delay or prevent soil compaction. The use of root
crops in cover crops can significantly reduce soil compaction. In this sense, Islam and
Reeder [103] showed that oilseed radish significantly decreased compaction to about 75 cm,
with an average improvement effect of about 40% compared with soil between the rows.
Chen and Weil [120] reported that the use of cover crops improved maize root penetration
in compacted soils and increased the availability of surface soil water. In a study in
India, Parihar et al. [104] reported that the CA practices of NT and permanent raised beds
reduced the penetration resistance by 15.9 and 30.7%, respectively, compared to CT in
maize rotations.

According to Holland [17], there is evidence that the long-term use of conservation
tillage can, in certain situations, lead to soil compaction. Similarly, Munkholm et al. [121]
concluded that direct drilling provoked the compaction of the arable layer below seeding
depth on sandy loam. Thus, the long-term viability of conservation tillage techniques
depends on a proper crop rotation [122] and/or the use of strategic or occasional tillage in
soils under NT [123,124].
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4.1.5. Soil Moisture Content

Water scarcity is one of the greatest challenges facing humanity in the coming decades [125].
CA practices improve soil moisture availability, especially under low-rainfall conditions and
could contribute to maintaining crop yield in a changing climate scenario [126]. In this sense,
several studies have reported a greater availability of water in CA systems with respect to
CT [85,127–129]. Residue retention and cover crops in CA systems improve infiltration [96]
and reduce runoff rates [127] and evaporation losses [130,131], as they protect soil from
direct contact with solar radiation and act as a barrier to air flow, contributing to higher
soil moisture.

No-till practices and residue cover improved soil–water relations in a study in Malawi,
with an average increase in soil water content of 22 and 18 mm in NT and CA, respectively,
compared to CT [132]. A meta-analysis carried out by Zhao et al. [133] concluded that
crop residue retention led to an increase in soil water content by 5.9% compared with crop
residue removal. In a rice system study, NT with surface residue and minimum tillage
with residue incorporation had higher soil moisture than CT with residue removed [134].
Similarly, Ghosh et al. [127] reported that soil moisture conservation was 108% higher under
CA than conventional agriculture plots. Mondal et al. [135] showed that the soil water
content was 14% higher in CA relative to CT in the sub-surface layer (15–30 cm), while
in other layers, there were no significant differences. A study by Chalise et al. [136] with
a corn–soybean (Glicine max L.) system highlighted that the use of cover crops with residue
returned improved the soil’s hydrological properties and increased soil volumetric water
content and soil water storage. In maize crops in the sub-humid and semi-arid regions
of Kenya, NT with residue retention significantly increased soil water content compared
to CT [137]. According to Sindelar et al. [138], residue removal decreased plant-available
water by 32% in soil depth of 0 to 5 cm and by 21% in soil depth of 5 to 10 cm. In this context,
Li et al. [96] reported that NT with residue retention increased soil-available water capacity
by 10.2% compared with NT without residue retention. Similarly, Choudhary et al. [139],
in a pearl millet (Cenchrus americanus L.)–mustard (Brassica juncea L.) rotation system in
rainfed semi-arid regions, reported higher soil water content throughout the season in plots
with residue retention than in the no-residue plots.

In irrigated plantations, crop residues conserve soil moisture and delay irrigation
timing, allowing farmers to save irrigation water. In this sense, Balwinder-Singh et al. [140]
found that the use of residue mulch of 8 t ha−1 in irrigated wheat led to saving 75 mm of
irrigation water. Comparably, Gupta and Sayre [141] reported that NT practices allowed
saving between 13 and 21% of irrigation water compared to CT systems. Assefa et al. [142]
highlighted that CA practices with a drip irrigation system lessened water needs by about
14–35% for various crops. In irrigated onion and garlic plantations in Ethiopia, CA plots
received 49 mm less water than CT treatment [143]. In addition, Jat et al. [144] showed
that a CA-based maize–wheat system decreased irrigation water use by 64% compared to
conventional management.

Based on field observations, many meta-analysis studies have contrasted the effects
of different tillage practices on determining crop production, evapotranspiration, and
water-use efficiency (WUE) [122,145–147]. Evidently, CA practices enhance WUE, as the
findings by Lu [148] suggested that crop residue return can increase crop yields and WUE.
In a study in a semi-arid region of China, Sun et al. [149] stated that conservation tillage
significantly enhanced WUE and crop yield with respect to CT. According to Das et al. [150],
experimental plots under CA practices had significantly higher WUE and significantly
lower water use than CT. That is, the zero tillage with planting on permanent broad beds
and residues treatment had higher WUE than the CT. Moreover, zero tillage with planting
on permanent broad beds and residues treatment had higher WUE than zero tillage with
planting on permanent narrow beds and residues. Thus, CA practices improve water
productivity due to their water harvesting and water conservation effects [151].

Although most studies have found positive effects of residue retention on soil water,
some negative consequences can also occur in certain environments, such as in rainfed
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areas. Cover crops in sloping lands with rainfed fruit crops do not result in economic
return; however, the environmental return is highly important [152,153]. Cover crops,
however, compete for resources (plant nutrients and water) with the trees, which can
lead to a decline in productivity [154,155]. In other words, the cover crop benefits are
more weather-specific than site-specific because when precipitation is low or not properly
distributed, the water reduction after cover crops could have a negative effect on the cash
crop growth and yield. In sloping olive orchards, a greater available soil water content
was found under a non-tillage system with plant strips (barley and native vegetation) of
4 m width than for a non-tillage system without plant strips, particularly beneath the tree
canopies [156]. In addition, Castellini et al. [157] reported the positive influence on soil
hydraulic function of minimum tillage compared to non-tilled soil on olive plantations. In
this context, Abazi et al. [158], examining rainfed olive orchards, determined that the use of
cover crops in a Mediterranean environment has a negative impact on olive transpiration
(25% average reduction), although this impact can be attenuated by early-date killing of
the cover crop in the middle of March.

Contrarily, in high-rainfall areas, the greater retention of soil moisture under CA can also
lead to waterlogging, with associated negative effects on crop growth and yield [91,159,160].

4.1.6. Water Runoff and Soil Loss

Conventional agriculture promotes runoff and soil loss by causing soil compaction,
crusting, and surface sealing, and by decreasing porosity. In contrast, CA is associated with
a reduction in soil erosion [161] (Figure 4), among other benefits. In particular, in rainfed
sloping lands in Mediterranean environments, the crop residue retention and cover crops
in CA systems protect the soil surface from raindrop impact and reduce the detachment,
displacement, movement, and deposition of soil particles, which causes soil sealing and
crust formation [162]. Furthermore, cover crops and their residues slow the velocity of
agricultural runoff along the slope, improving infiltration and preventing soil erosion [163].
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According to Thierfelder and Wall [164], plots with reduced tillage and surface residue
retention had less runoff and soil erosion than conventionally tilled plots. Under semiarid
rainfed conditions in western India, Kurothe et al. [165] reported that NT reduced runoff by
16.2% and soil loss by 37.2% compared to CT. Panachuki et al. [166] reported a significant
reduction in runoff and soil loss in an NT system with soybean residues, compared to an NT
system without residues. The retention of residues on the soil surface exerted a greater
protective effect than their incorporation into the soil. In an experiment in northern Ethiopia
with a wheat (Triticum sp.)–teff (Eragrostis tef ) rotation, after 3 years, soil loss and runoff
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were significantly lower (5.2 t ha−1 and 46.3 mm) in permanent raised beds with 30%
standing stubble compared to CT without surface residue (24.2 t ha−1 and 98.1 mm) [167].
Ghosh et al. [127] reported that mean runoff coefficients and soil loss with CA plots were
~45% less and ~54% less than conventional agriculture plots, respectively. The efficiency
by which surface residues control runoff and soil losses increased with the amount of
residue. In this context, Ranaivoson et al. [168] reported that residue levels of 1.5 to
4.5 t dry matter ha−1 decreased water runoff by about 50%, and residue amounts of 2 to
4 t dry matter ha−1 reduced soil erosion by about 80% compared to bare soil. The amount
of residue necessary to reduce runoff and soil loss varies depending on the slope of the
field and the intensity or amount of rainfall [169].

According to Du et al. [170], conservation practices decrease surface runoff and erosion,
on average, by 67 and 80%, respectively, compared with conventional practices; the use
of cover crops is what most reduces erosion and runoff. In northern Ethiopia, permanent
raised beds with contour furrows at 60–70 cm intervals significantly reduced runoff and
soil loss compared to traditional ploughing, with 255 and 653 m3 ha−1 runoff and 4.7 t ha−1

and 19.5 t ha−1 soil loss, respectively [171]. In another study in Ethiopia, CA practices also
reduced erosion and runoff. CA registered a runoff coefficient of 18.8% and a soil loss of
14.4 t ha−1 yr−1, while for plain tillage, these parameters were 30.4% and 35.4 t ha−1 yr−1,
respectively [172].

Terracing is one of the oldest techniques for the conservation of water and soil in
mountainous regions; terraces are built along contour lines to increase the arable surface
area. Deng et al. [173] pointed out that these structures provide many ecosystem services,
including the control of runoff and sediment by over 41.9 and 52%, respectively, and the
improvement of crop yield and soil water content by 44.8 and 12.9%, respectively. In this
context, the implementation of cover crops in the taluses of orchard terraces is a key factor
for preventing their collapse by water erosion, lessening the runoff, soil loss, and pollution
risk in low lands [174,175].

The rainfed plantations in the Mediterranean mountains with traditional practices pro-
voke high soil erosion rates, compromising their long-term sustainability. Francia et al. [176]
evaluated erosion rates by the effect of NT, CT, and cover crops in olive (Olea europea L.)
orchards of 25.6, 5.7, and 2.1 t ha−1 yr−1, respectively. Similarly, Gómez et al. [177] deter-
mined the soil erosion values for NT, CT, and cover crops as 6.9, 2.9, and 0.8 t ha−1 yr−1,
respectively. Recently, Cárceles et al. [178] reported that the strategies based on CA proved
to be effective. The combination of minimum tillage with plant strips in almond (Prunus
dulcis L.) and vineyard (Vitis vinifera L.) orchards was a more efficient practice in terms
of water erosion control than only minimum tillage, averaging declines in soil erosion
and runoff rates of 36 and 39%, respectively. Similarly, for olive crops, the association
of minimum tillage and plant strips compared to a no-tillage system was able to reduce
both soil erosion and runoff rates by 36%. Thus, the implementation of soil management
measures based on cover crops is essential for hillslopes and low-fertility soils, encouraging
their sustainability.

4.1.7. Soil Temperature

Soil temperature is an important property that affects crop growth and development
and impacts numerous soil physical, chemical, and biological processes. Cover crops and
retention of residues in CA systems can help moderate and stabilize the fluctuations in soil
temperature during the crop growth period as compared to systems with bare soil [34],
which can be especially important in regions with large fluctuations in temperatures [179].
The magnitude of variation in soil temperature due to management is higher in the soil top
layer, decreasing in the lower layers [180]. Rai et al. [181] reported that the CA practices
with mulching were effective for the reduction in soil temperature fluctuations with depth.

Moreover, crop residue retention on the soil surface reflects sunlight and isolates
soil from high temperatures and thus reduces evaporative losses of water. The effect of
residues on the soil temperature changes depending on the color of the residues. According
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to Sharratt and Campbell [182], dark residues resulted in higher mid-day temperatures
compared to lighter-colored residues. Retention of residues on the soil surface in CA
systems decreases daytime soil temperature [183]. Li et al. [184] reported that the crop
residue remaining on the soil surface in conservation tillage systems can lessen the soil
temperature change because surface residue both increases the reflection of incident solar
radiation and acts as an insulating barrier between the soil surface and the warmer or
colder atmospheric air above [185]. In this context, lower maximum soil temperature and
higher minimum soil temperature in the 0–5 cm surface soil layer were recorded under
minimum tillage with mulch treatments, compared to the CT with no-mulch treatment [186].
According to Gupta et al. [187], a zero-tillage system with residue cover had a lower
soil temperature than a zero-tillage system without residue and moldboard ploughing.
Guzman and Al-Kaisi [188] also reported warmer soil temperatures when crop residues
were removed. In the summer season, Oliveira et al. [189] reported that daytime soil
temperature in a zero-tillage system with residue retention was 2–8 ◦C lower than that in
the conventional tillage system.

In addition, this lower soil temperature under CA systems in hot regions can help
improve plant growth and crop yield [190]. In cooler climates, however, reduced soil tem-
perature from residue cover may be a disadvantage because it can delay seed germination
and plant maturity and negatively affect yield [91,191]. In this sense, Chen et al. [192]
reported that straw retention decreased soil temperature in spring and delayed the de-
velopment of winter wheat up to 7 days, on average reducing the final grain yield by 7%
compared to systems without straw retention. To address this issue and attempt to adapt
this soil management system to temperate zones, the withdrawal of residues from the seed
strip has been suggested [191,193].

Tillage operations can also affect soil temperature by changing soil surface micro-
topography, as inclined ridge surfaces absorbed about 10% more solar radiation than flat
surfaces, according to Radke [194]. Additionally, Shen et al. [195] claimed that tillage had
significant effects on soil temperature in 10 of 15 weekly periods, with the temperatures of
non-tilled soils being 0–1.5 ◦C lower than those of moldboard plough soils when residue
was not returned in the previous autumn. Moreover, the ridge tillage showed no clear
advantage over non-tilled soils in increasing soil temperature.

Finally, other studies reported an increase in soil temperature due to stubble reten-
tion [196], which helps crops survive during the cold winter and reduces emergence time,
improving crop productivity. Kahimba et al. [197] showed that in the Canadian prairies,
the presence of a crop cover or perennial vegetation resulted in relatively warmer soil
profile temperatures and shallower depth of frozen soil layers. Moreover, according to
Al-Darby et al. [198], despite the delay in the growing season due to the lower soil tempera-
ture in the CA systems, there was no reduction in dry matter and corn grain yield due to
the greater amount of accumulated water.

4.2. Influence on Soil Chemical Properties

Agronomical practices may change soil chemical properties and thus fertility. The
responses of soil chemical fertility to tillage practices and the magnitude of these changes
depend on several factors: soil type, cropping system, climate, fertilizer application, and
management practices. Long-term tillage causes severe SOM depletion in agroecosystems
and can lead to soil degradation. In contrast, CA practices increase chemical quality by
improving the SOC storage and nutrient dynamics. The impacts of CA techniques on some
of the most relevant soil chemical properties are presented in the following sections.

4.2.1. Soil Organic Carbon

SOM is a keystone indicator of soil quality because it is linked to other physical,
chemical, and biological soil quality indicators [199], playing a crucial role in soil fertility
and sustainability, as it increases soil aggregate stability and water retention and provides
a reservoir of essential nutrients for crops [200].
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In addition, there is currently a growing interest in increasing the stock of SOC in
agroecosystems because this can help mitigate climate change. In agricultural practices
with high organic inputs, reduced or no tillage and permanent soil cover are capable of
increasing SOC stock, acting as a carbon sink and thus mitigating the agricultural impacts
on climate change [201,202]. On the other hand, the increase in SOC has positive effects on
the quality of the soil, and this can improve the soil resilience, contributing to adaptation to
climate change [203].

Soil tillage increases the decomposition rates of SOM, as it implies an alteration of the
soil structure and the exposure of the organic matter retained in the micro-aggregates [204].
In a study by Repullo-Ruibérriz de Torres et al. [205], over a 4 year monitoring period on
an olive plantation, SOM increased by the effect of different cover crops (Brachypodium
distachyon, Eruca vesicaria, Sinapis alba, and native vegetation) between 10.9 and 14.3 Mg
ha−1 at 0–40 cm soil depth.

The conversion of CT to conservation tillage increases the accumulation of SOC in
the soil surface layer. CA increases SOC stock through the reduction in SOC losses by
oxidation and erosion, the increase in organic carbon inputs to the soil (plant residues),
or a combination of both factors [206,207]. Figure 5 summarizes conservation agriculture
practices that may influence SOC stock increases.
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Changes in SOC storage with CA practices depend on various factors such as the quan-
tity and quality of plant residues, time period, or edaphoclimatic characteristics [208]. These
effects are most evident in the topsoil. In this context, the global analyses by Luo et al. [209]
and Mondal et al. [210] indicated that a no-tillage system benefited the storage of SOC only
in the upper 10 cm of the soil. Camarotto et al. [211] reported that CA increased the SOC
stock in the 0–30 cm layer (0.25 Mg C ha−1 yr−1) compared to conventional agriculture. In
a maize–mustard rotation, Pooniya et al. [212] reported that CA systems had greater values
for SOC than CT at soil depths of 0–0.15 m and 0.15–0.30 m, while at 0.30–0.45 m, there was
no difference. Therefore, to obtain a more accurate assessment of CA practices’ impact on
SOC, the entire plow depth should be sampled [213]. In addition, comparing the results of
experiments that compare CA with conventional systems is complicated, since they depend
on several factors: depth of the investigated soil, sampling methodologies, duration of
the study, edaphoclimatic variability, and crop type [211]. In irrigated almond orchards in
Mediterranean semi-arid regions, according to Repullo-Ruibérriz de Torres [214], a crop
mixture (65% barley and 35% vetch) and barley cover crops showed higher potential for C
sequestration than spontaneous vegetation, augmenting the SOC by more than 1.0 Mg ha−1

after two monitoring seasons.
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Long-term CA increased SOC content in the 0–5 cm soil layer in an intensive cereal-
based cropping system in India [215]. In a study in northern Italy, Perego et al. [216] showed
that CA systems in the medium term resulted in significantly higher SOC content and SOC
stock than conventional systems. A study in rice (Oryza sativa)–wheat cropping systems in
a South Asian region showed that the stratification and storage of SOC were higher under
CA practices compared to intensive tillage-based conventional agricultural practices [217].
In a meta-analysis to evaluate the effects of minimum tillage and crop residue retention
on SOC stock in 0–30 cm soil depths, Li et al. [218] reported that a no-tillage system with
residue retention and a reduced tillage system with residue retention increased SOC stock
by 13 and 12%, respectively, in comparison to CT. In a rice–wheat system, after 7 years, NT
combined with partial residue retention increased SOC stock at 0.6 m depth [219].

4.2.2. Soil pH

The effect of conservation practices on soil pH is generally restricted to the topsoil
layers. The effect of crop residues on soil pH depends on the chemical composition of the
residues and the properties of the soil [220]. Residues high in ash alkalinity and N, such as
some legume residues, will have a greater effect on pH compared to residues with lower
content, such as wheat [221]. The initial pH of the soil has a substantial impact on the change
in soil pH through the incorporation of crop residues, as it affects the mineralization of N
in the residue and the rate of decomposition of organic compounds [222]. Similarly, a long-
term study by Muchabi et al. [223] of fields under CA and CT highlighted a significantly
higher soil pH (6.18 vs. 5.62), SOC, nodulation, and biological N fixation as a result of
CA implementation after 7 years of practice. These findings are comparable with those
reported earlier by Duiker and Beagle [224] and Umar et al. [225], who ascribed the upward
changes in soil pH to the buffering effect of accumulated organic matter under CA. Recently,
Sinha et al. [226] reported that the soil pH generally lowered under zero tillage compared
to CT, being the most notable in acidic soil sites, where pH decreased by up to 0.4 units; the
lower the initial soil pH, the higher was the decrease in pH under zero tillage.

Several studies have reported an increase in acidity in topsoil layers under reduced
tillage treatments in comparison with CT [227,228]. This increase in acidity is attributed to
a greater accumulation of soil organic matter on the soil surface in NT, which decomposes
and produces acidity. In the deeper layers, there is an increase in pH because the soluble
component of the residues moves through the soil profile and contributes to the alkalization
of the subsoil layers [228,229]. In acid soils, various authors have reported that CA systems
increased soil pH [229,230]. The organic matter that increases with CA practices tends to
bring the pH to neutral or slightly acidic by buffering the pH of the soil. A long-term CA
experiment carried out by Ligowe et al. [231] registered, on average, 14 and 21% higher pH
and SOM, respectively, than the conventional practice, with a positive correlation (74%)
between SOM and pH found during the fifth monitoring season.

4.2.3. Cation Exchange Capacity

The cation exchange capacity (CEC) is the ability of a soil to retain and release pos-
itive ions due to its content of clays and organic matter, and is considered an indicator
of soil fertility. CA practices increase SOM content, and this provokes an increase in
CEC [232], as it increases the amount of negative charges [233]. In this context, Ben Moussa-
Machraoui et al. [234] reported a positive correlation between SOM and CEC. This increase
in CEC driven by improvements in SOM via cover cropping can also lead to an increase in
yield stability [235].

According to Sá et al. [233], CEC increased by 0.37 cmolc kg−1 for every gram of C
per kg of soil. The effects on CEC are generally limited to the topsoil, which is where the
SOM content is increased [224]. In this context, Williams et al. [235], in a study in the USA,
showed that cover cropping increased SOM compared with no cover crop, implying a rise
in CEC. In a tropical soil under no-till farming, CEC increased by 25% in the top soil layer
(0–20 cm) with every 1.8 kg m−2 of stored organic carbon [236]. After 5 years, CEC increased
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in the topsoil when residues were retained compared to soils without residue [237]. Sithole
and Magwaza [228], in a long-term study in South Africa, showed that CEC was affected
by tillage practices. On average, CT resulted in a significantly lower (71.9 mmolc.kg−1)
CEC than rotational tillage (109 mmolc kg−1) and NT (114 mmolc kg−1). A long-term field
experiment under rice-based cropping systems showed that the CEC was higher in NT
than in CT, amounting to 13.04 and 9.76 cmol (p+) kg−1, respectively [238]. In a tropical
rainfed agroecosystem, the adoption of minimum tillage provoked an 11.2% increase in CEC
compared with the CT system [239]. Moreover, Mloza-Banda et al. [93] reported a significant
increase in CEC after 2 years of conversion to CA (15.24 cmol (+) kg−1) compared to annual
ridge tillage (13.38 cmol (+) kg−1). Similarly, Zerihun et al. [240] reported an improvement
in CEC with crop rotation and intercropping in CA systems.

Conversely, Fonteyne et al. [241], in a study in Mexico of 20 maize-based trials, did
not register differences in CEC between CA and local conventional practices. Comparably,
Mrabet et al. [242] did not find significant differences in CEC between CA and CT in a study
in Morocco. The lack of difference between the different management systems may be due
to the short duration of the studies or due to the influence of local soil conditions.

In other studies, a lower CEC was observed in soils under CA due to a decrease in pH,
which resulted in a decrease in pH-dependent cation exchange sites [227,243].

4.2.4. Nutrient Availability

CA practices have a significant impact on nutrient distribution and transformation
in soil; thus, they can strongly influence the soil nutrient dynamics [178]. That is, CA
systems that cause an increase in organic matter due to the addition of residues can pro-
duce a rise in nutrient reserves for plants, registering higher concentrations of nitrogen
(N) [244,245], phosphorus (P) [246,247], potassium (K) [228,247], calcium [248], magne-
sium [249], zinc [250], and manganese [249] in the soil. The nature of crop residues and
their management has a significant influence on the plant nutrient availability of soils. For
example, in the case of N, the addition of legume residues with a low C/N composition
can result in N mineralization, whereas cereal residues with a high C/N composition
can temporarily immobilize N during the decomposition process [251,252]. In a review
study on the effects of crop residues under CA, Ranaivoson et al. [168] reported, in general,
a higher increase in soil mineral N in the case of legume residues than in the case of cereal
residues. The availability of nutrients with the retention of residues is also a function of
other factors, such as the amount of surface residues or the proportion of soil covered by
them [168]. The availability of nutrients in the soil can also be affected by the change in
topsoil pH due to CA practices [253].

A greater amount of residues stored in the soil with CA systems does not always lead
to a greater availability of nutrients for plants. Soon after CA is implemented, while total
stores of N may be higher, the amount of plant-available N may decrease due to lower
mineralization rates and higher N immobilization rates [111]; in this case, it is necessary to
apply N fertilization to maintain the yield [228].

An NT system with a total absence of soil mixing can lead to the stratification of
immobile nutrients such as P and K in the surface layers of soils [254]. In dry areas
of Morocco, Mrabet et al. [242] showed that NT caused surface enrichment of P and K
compared with CT. This can be a problem, especially in arid regions, as drought conditions
can reduce nutrient uptake from the dry soil surface, inaccessible to plant roots [255].
Furthermore, these conditions can increase the risk of N and P losses by surface runoff [256].
Higher moisture content due to CA practices can lead to N losses due to denitrification [257].
Finally, according to Morugán et al. [258], the permanent cover crops in the alleys led to
higher increases in SOC and soil N; however, this practice was related to negative effects
on available P in the soil. Similarly, Sujatha et al. [259] claimed that the extensive root
system of legumes was beneficial for improving their ability to release organic acids from
their roots that enhanced K availability in soil. Table 3 shows the implantation effect of
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CA practices compared to CT in hillslope farming with rainfed olive orchards in southeast
Spain [260].

Table 3. Effect of CA practices on soil physico-chemical parameters in olive orchards throughout 3
year monitoring period (SE Spain).

Soil Management Year
pH MCP BD SOC NT P K CEC

(H2O) (%) (g cm−3) (g kg−1) (mg kg−1) (cmol (+) kg−1)

Minimum tillage
and spontaneous
vegetation strips

1st 7.5
(±0.1)

11.4
(±4.3)

1.17
(±0.04)

8.4
(±4.8)

0.45
(±0.03)

6.4
(±2.6)

68.7
(±18)

15.8
(±3.0)

3rd 7.6
(±0.2)

12.6
(±3.6)

1.24
(±0.08)

10.2
(±7.5)

0.68
(0.05)

7.0
(±3.5)

77.7
(±26)

16.7
(±7.8)

Minimum tillage
and legume strips

1st 7.5
(±0.2)

10.0
(±3.4)

1.18
(±0.14)

8.0
(±5.7)

0.58
(0.01)

4.6
(±1.7)

84.4
(±14)

10.2
(±4.4)

3rd 7.7
(±0.5)

11.3
(±3.2)

1.26
(±0.07)

8.9
(±3.4)

0.67
(0.08)

5.2
(±4.2)

94.7
(±22)

14.7
(±7.1)

Conventional tillage 1st 7.5
(±0.1)

11.7
(±2.8)

1.20
(±0.09)

8.3
(±3.4)

0.55
(±0.03)

6.9
(±3.9)

67.5
(±18)

11.8
(±3.5)

3rd 7.6
(±0.2)

10.1
(±3.1)

1.10
(±0.15)

7.2
(±2.7)

0.48
(±0.05)

7.2
(±2.7)

63.7
(±26)

12.7
(±7.4)

BD, bulk density; MCP, macroporosity; SOC, soil organic carbon; NT, total nitrogen; P, Olsen’s extractable
phosphorus; K, available potassium; CEC, cation exchange capacity. Values in parentheses are standard deviation.

According to Belay et al. [261], in supplementary irrigation vegetable production
systems, CA practices can optimize nutrient use by decreasing nutrient losses through
runoff and leaching. In this respect, several studies show that CA practices reduce the loss of
nutrients via runoff or nutrients adsorbed in sediments lost by water erosion [176,262–265].
In this context, Jordan et al. [266] registered an 81% decrease in total P loss and a 94%
decrease in organic nitrogen with non-inversion tillage compared with plow. In citrus
orchards, the straw mulching covering the soil surface reduced runoff and sediment losses
and subsequently decreased nutrient losses; the total nitrogen and phosphorus losses were
significantly decreased by the straw mulching treatment compared with conventional
treatments without mulching [267]. Liu et al. [268], using the Soil and Water Assessment
Tool (SWAT), concluded that conservation tillage and contour farming can help reduce
runoff by 15.99% and 9.16%, total nitrogen losses by 8.99% and 8%, and total phosphorus
losses by 7% and 5%, respectively. In a study by García-Díaz et al. [269], the efficiency of
using groundcover in vineyards to reduce mineral N losses via runoff was demonstrated.

As stated by Dinnes et al. [270], the strategies for reducing NO3 loss through leaching
can include CA practices by using cover crops, diversifying crop rotations, and reducing
tillage. Cover crops or intercrops with deep-rooted plants reduce nutrient loss, intercepting
leached nutrients from the root zone and returning them to the soil surface via mulch or as
green manure. Wyland et al. [271] reported a 65–70% reduction in nitrate leaching from
cover-cropped plots compared with the fallow control. In a study in Italy, CA practices had
lower NO3 concentrations below the maximum rooting zone compared to conventional
agricultural practices, thus reducing NO3 leachate to groundwater [272]. According to
Camarotto et al. [245], continuous soil cover and cover crops in CA systems reduced N
leaching compared to conventional agriculture.

4.3. Influence on Soil Biological Properties

Soil biota plays a relevant role in soil health and sustainable crop production by sup-
porting important functions such as soil aggregation, soil aeration, nutrient cycling, and
bio-control, or the suppression of plant pathogens. Anthropogenic activities and especially
intensive agriculture cause a considerable loss of soil biodiversity. Sustainable land uses
are linked to the conservation of soil biological diversity [273]. Higher biodiversity means
greater resilience to disturbances in the soil system [60]. The response of soil microorgan-
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isms and biochemical properties to soil management practices is measured by parameters
such as the size and activity of the microbial community and soil enzymatic activities.

4.3.1. Microbial Activity

The soil microbial biomass (SMB) is commonly used to assess soil microbial activ-
ity, as this parameter responds quickly to changes in soil management. In this context,
Zornoza et al. [274] stated that the quantitative description of the structure and diversity of
the microbial community can be used as a tool for the evaluation of soil quality. That is,
SMB can be used as an indicator of early changes in cropland management practices [275].
CA creates optimal conditions for microorganisms, with less frequent disturbance of the
soil, increased SOM, improved water and thermal conditions, and increased diversity
of substrates.

Crop diversification can increase soil microbial diversity and activities because the
roots of cover crops release exudates in intercropping systems, contributing to greater
microbial biomass [276]. In this context, Lopes and Fernandes [277] registered an increase
in microbial biomass C with intercropping compared with monoculture. Singh et al. [278]
reported that CA management systems can lead to an improvement in soil biota. Sim-
ilarly, Wang et al. [279], in a study in drylands of northern China, reported a more di-
verse soil bacterial community in conservation tillage soils than in CT soils. Moreover,
Silva et al. [280] registered a decrease in microbial diversity as tillage practices intensi-
fied. Dorr de Cuadros et al. [281] showed that microbial diversity was significantly higher
in the NT system at four taxonomic levels (order, family, genus, and species) compared
with the CT system. Henneron et al. [282] analyzed the long-term effects of CA on soil
biodiversity, finding an improvement in the biomass and biodiversity of microorganisms.
Baghel et al. [283], in a rice–wheat cropping system, recorded higher microbial biomass
carbon under CA practices compared to CT. In a maize–mustard rotation, the zero-tilled
flatbed and permanent bed CA practices improved soil biological properties, with higher
SMB-C than CT [212].

Additionally, in a meta-analysis of 96 paired experiments, Li et al. [284] showed that
CA practices (NT with residue retention) resulted in higher soil microbial biomass carbon
(SMB-C) and nitrogen (SMB-N), and microbial quotient (qMic, Cmic-to-organic C ratio).
In a continuous rice–wheat rotation, zero tillage and residue cycling compared to CT
and residue removal increased SMB-C by 29 and 56%, respectively, whereas the SMB-N
increased by 27 and 84%, respectively [285]. In a pigeon pea (Cajanus cajan (L.) Millsp.)
and soybean intercropping system, conservation tillage systems recorded significantly
higher SMB-C and SMB-N levels than CT without crop residues [286]. Spedding et al. [287]
reported higher SMB-C and N levels in plots with residue retention than with residue
removal, although the differences were significant only in the 0–10 cm layer. This agrees
with Ceja-Navaro et al. [288], who found that in soils under NT with a monoculture of
maize and removal of crop residue, microbial diversity was strongly reduced compared to
soil under wheat NT where crop residues were retained. According to Legrand et al. [289],
soil tillage is the agronomic practice that most influences soil bacterial diversity, with
a greater functional and taxonomic diversity of bacteria in agricultural soils with minimal
tillage compared to conventional tillage. In this context, Mathew et al. [290] reported
a higher microbial biomass at the 0–5 cm depth in a long-term no-tillage system than in
a conventional tillage system. According to Lopes and Fernandes [277], the changes in
microbial community composition do not coincide with the increased soil physical quality
resulting from CA practices, indicating the influence of other factors, such as edaphic or
anthropic, on the soil microbial profile.

The crop system also influences microbial diversity. In this respect, Dorr de
Cuadros et al. [281] reported greater microbial diversity in soils with a crop system based
on cereals without legumes. That is, cereal straw substrates have a higher C:N ratio, which
stimulates the microbial community to degrade organic substrate and leads to an increase
in the microbial population.
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4.3.2. Soil Enzymatic Activities

The microbial enzymatic activities of the soil serve as an indicator of the potential of
the soil to decompose organic C and mineralize nutrients (P and N), and thereby nutrients
available for plants. Soil enzymatic functions are greatly influenced by the cropping system
and the degree of soil disturbance [291].

The main enzymes used to determine soil health are β-glucosidase, N-acetyl-
glucosaminidase, and acid phosphatase, which are responsible for mediating C, N, and P
cycling in the soil, respectively. According to Bonini-Pires et al. [292], the association of NT
and increased crop rotation enhanced enzymatic activity in the soil surface. In a rice–wheat
system in India, soil enzyme activities increased (5–18%) under an NT system with residues
compared to an NT system without residues and a CT system without residues [293]. The
implementation of CA in maize rotations improved soil enzymatic activities [104]. Similarly,
Kumar and Babalad [286] registered significantly higher soil urease, dehydrogenase, and
total phosphate activities in conservation tillage systems as compared to CT without crop
residue. According to Choudhary et al. [285], soil enzyme activities were significantly
increased in a conservation agriculture-based maize–wheat system.

In a study by Sharma et al. [294], an NT rice–wheat system with rice residue mulch
increased soil dehydrogenase, cellulase, and alkaline phosphatase activities by 23%, 34%,
and 14%, respectively, compared to CT. Pooniya et al. [212] reported that CA practices
(zero-tilled flatbed and permanent bed) significantly increased dehydrogenase, alkaline
phosphatase, and urease activities compared with CT.

The impact of CA practices on soil microbial and enzymatic activities in hillslope
farming with rainfed olive orchards compared to CT is shown in Table 4 [259]. Moreover,
Kandeler et al. [295] determined that protease and phosphatase activities significantly in-
creased after only 2 years of minimum tillage compared to CT. Similarly, Roldán et al. [296]
found that CA techniques based on zero tillage and legume cover remarkably enhanced
the soil enzyme activities (dehydrogenase, urease, protease, β-glucosidase, and acid phos-
phatase). In a study by Pandey et al. [297], the no-till system fostered an improvement in
the activities of β-glucosidase as well as microbial biomass carbon and nitrogen compared
to CT. Similarly, Sinsabaugh et al. [298] found that minimum tillage promotes β-glucosidase
activity due to the augmentation in microbial biomass, more substrate availability, and
reduced soil disturbance, as was noted in a CA system compared to CT.

Table 4. Effect of CA practices on soil microbial and enzymatic activities in olive orchards throughout
3 year monitoring period (SE Spain).

Soil Management Year
MBN MBC B-GLU PRO DHA PHP

(mg kg−1) (µg pNP g−1 h−1) (µg TRS g−1 h−1) (µg TPF g−1 h−1) (µg pNP g−1 h−1)

Minimum tillage
and spontaneous
vegetation strips

1st 5.8
(±2.2)

3.4
(±1.4)

401
(±1.2)

12.0
(±1.4)

99.20
(±1.9)

131.5
(±11.8)

3rd 6.9
(±3.4)

3.8
(±1.1)

452
(±2.4)

12.8
(±1.5)

111.8
(±3.4)

139.8
(±22.4)

Minimum tillage
and legume strips

1st 5.0
(±1.2)

3.1
(±1.0)

461
(1.9)

11.9
(±0.9)

100.7
(±2.7)

120.4
(±17.1)

3rd 6.4
(±0.9)

4.2
(±2.4)

483
(±3.5)

12.7
(±1.6)

119.1
(±5.2)

131.4
(±13.7)

Conventional
tillage

1st 5.3
(±0.8)

2.0
(±0.8)

131
(±1.2)

11.7
(±1.4)

92.43
(±5.1)

122.0
(±21.5)

3rd 4.3
(±0.7)

1.3
(±0.9)

196
(±1.8)

12.4
(±1.9)

92.78
(±4.9)

129.6
(±20.9)

β-GLU, β-glucosidase; PRO, protease; DHA, Dehydrogenase; PHP, Phosphatase; MBN, microbial biomass-
nitrogen; MBC, microbial biomass-carbon. Values in parentheses are standard deviation.

Ultimately, it is evident that CA practices positively impact soil microorganisms and
microbial processes ascribed to changes in the quantity and quality of plant residues that
enter the soil, their spatial distribution, changes in the provision of nutrients, and physical al-
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terations. Consequently, the alternative modifications to CT systems, especially those based
on methods used in CA, are able to boost important functions for soil health restoration.

4.3.3. Earthworms

Earthworms are one of the most important soil macrofaunal groups and are described
as ecosystem engineers because of their effects on soil properties and on the availability of
resources for other organisms [299]. They determine the nutrient cycle, microbial activity,
the stability of soil aggregates, and the density and distribution of other invertebrates.
Soil tillage causes physical damage to earthworms as well as alterations of their habitat,
and can vary the community structure and relative abundance of earthworms [300]. The
variability in burrowing and feeding behaviors influences the effects that tillage type can
have on earthworms [301]. Thus, the species that inhabit the topsoil are most at risk of being
adversely affected by plowing [302]. Earthworms have been observed to respond positively
to CA practices. Contrarily, a study by Baldivieso-Freitas et al. [303] did not register any
positive effects of the combination of CA techniques (reduced tillage by chiseling and green
manures) on earthworm populations in a Mediterranean environment. However, organic
fertilization showed a more significant role and enhanced their population. Therefore, it
is crucial to understand how different factors (soil properties, crop rotations, and climate
conditions) interact when designing a sustainable organic system.

According to Van Capelle et al. [304], the increase in earthworm density under no-till
systems is due to the interactions of different effects: reduced injuries, decreased exposure
to predators at the soil surface, reduced microclimate changes, and increased availability of
organic matter. Radford et al. [305] reported that earthworm numbers increased fourfold
with a zero-tillage system as compared to CT. Birkás et al. [306], in a study in Hungary,
registered significantly more earthworms in soils under a conservation tillage system that
included leaving stubble residues on the surface, compared to soils that were deteriorated
by tillage pans and left bare without residues. In a study in Zambia, soils under CA
practices with residue retention and crop rotation had higher earthworm populations in
the top 30 cm than soils under conventionally ploughed practices [87]. Errouissi et al. [307]
showed that zero tillage with surface residue increased the populations and diversity of soil
invertebrates, including earthworms, compared to CT because of improved soil properties
and a lack of soil disturbance. Crop residues retained on the soil surface and minimum
soil disturbance improve soil structure, are a food resource, and cool the soil temperature,
allowing the number and biomass of earthworms to increase [308]. In a study in central
Mexico, Castellanos-Navarrete et al. [84] showed that CA produced an evident increase in
the abundance and biomass of earthworms compared to CT. Sharma and Dhaliwal [309], in
a study of rice–wheat cropping systems in South Asia, concluded that a zero-tillage system
with crop residue retention improved micronutrient contents and provided feeding for soil
macrofauna, especially earthworms, as compared to conventional tillage without residue.
In a long-term trial in Zambia, Muoni et al. [310] concluded that reduced tillage systems
and crop rotations increase biological activity, with the density of termites and earthworms
being higher in CA systems than in CT systems. Henneron et al. [282] reported an increase in
anecic earthworms in the long term in CA systems. Additionally, Pelosi et al. [302] reported
that the decrease in soil tillage intensity led to an increase in functional diversity and an
increase in the density of anecic earthworms. Several studies have reported a positive
impact of management systems that include diversified crop rotations on earthworm
density [311,312].

4.3.4. Soil Respiration

Soil respiration comprises the oxidation of organic matter by microorganisms and
rhizosphere respiration [313]. It is a measure of the metabolic activity of the soil microbial
community and is considered as the second-largest terrestrial carbon flux worldwide [314].
It is one of the most widely used soil biological indicators in soil quality evaluations [62].
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Soil respiration is sensitive to soil disturbances, so it can be used as an indicator to detect
soil degradation early [315].

Soil management affects the soil microclimate and biotic factors (soil organic car-
bon, aboveground biomass, root biomass, and plant residues) that indirectly influence
soil respiration [316]. Several studies have reported the effect of conservation agriculture
practices on soil microbial respiration [277,317,318], without consistent trends. Some stud-
ies did not report significant differences in soil respiration between conventional tillage
and conservation agriculture practices [277,319,320]. This may be because tillage seems
to affect the temporal distribution more than the total amount of CO2 emissions from
the soil [321]. Therefore, to achieve an accurate assessment of the effects of agricultural
practices on soil respiration, it is necessary to design a seasonal sampling [322]. In contrast,
other studies recorded significantly higher soil respiration values in CA systems than in
CT systems. In a study in Cambodia, Edralin et al. [317] reported higher soil respiration in
CA (55.9 ± 4.8 kg CO2-C ha−1 day−1) than in CT (36.2 ± 13.5 kg CO2-C ha−1 day−1). In
the long term, NT increased soil respiration compared to CT, by 16, 19 and 26% after 6, 20
and 35 years of implantation [103]. Additionally, a 12 year study showed that, compared to
conventional tillage, no-till practices resulted in higher soil microbial respiration [323]. Sap-
kota et al. [103] reported higher soil respiration in no-tillage systems than in conventional
tillage (+44%). In an apricot orchard, cover crops increased soil respiration compared to
plots with bare control, herbicide control or mechanical cultivation [324].

According to Williams et al. [325], agricultural practices that imply the greater crop di-
versity, reduction in mechanical soil disturbance and/or an increase in organic amendment
inputs that characterize CA systems improve the microbiological activity of the soil. CA
practices increase organic carbon inputs to the soil, for example, through plant residues, im-
proving soil biological activity [326]. In this context, Bera et al. [327] observed a significant
and high positive correlation between SOC and basal soil respiration, of 0.84.

5. Conclusions and Future Perspectives

The main challenge of conserving and improving soil health is guaranteeing its long-
term productivity and environmental sustainability. As was reviewed, CA systems can
be implemented to minimize negative socioeconomic and environmental consequences
associated with soil degradation by enhancing soil health and promoting the sustainability
and multifunctionality of agroecosystems.

To meet the global challenges of food security and environmental conservation, CA
has been identified as one of the technological options for a sustainable intensification of
agriculture. CA systems have clear advantages over conventional agricultural systems in
improving soil health and the efficient use of natural resources, reducing the environmental
impacts of agricultural activities, saving inputs, reducing the cost of production, etc.

Regarding the implementation of CA practices, there are a number of restrictions and
challenges that must be addressed in order to increase their adoption on a large scale:

- Unavailability of appropriate equipment and machines, especially for small- and
medium-scale farms;

- Use of crop residues for livestock feed and fuel;
- Lack of knowledge about the benefits of CA and how to implement CA;
- Farmer mind-sets that limit the adoption of CA due to traditions or prejudices;
- Lack of technical and financial support from governments, international organizations,

and/or extension agencies;
- Technical problems that can arise with the adoption of CA practices such as inadequate

weed management, nutrient stratification, lower N availability, development of surface
crust, etc., which can translate into a decrease in yield and can motivate farmers to
abandon the system.

To overcome these constraints and increase the performance of CA worldwide, it is
essential that CA systems be well-adapted to specific agronomic, environmental, social,
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and economic conditions. Consequently, it is necessary to carry out the following measures,
among others:

- Improve the availability of machinery and supplies of plant nutrition;
- Identify and eliminate sociocultural barriers to CA adoption;
- Improve locally adapted management, such as appropriate crop rotations or the

frequency and optimal timing of strategic tillage;
- Increase institutional support, research, efficiency of extension services, and informa-

tion dissemination mechanisms.

Finally, in order to guarantee the long-term productivity and environmental sustain-
ability of agroecosystems, it will be vital to develop new tools and methodologies to assess
soil quality and health that can be used to evaluate and guide soil management decisions.
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