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Abstract: The processes of soil erosion and land degradation are more rapid in the case of inap-
propriate agricultural management, which leads to increased soil loss rates. Moreover, climatic
conditions are one of the most important determining factors affecting agriculture, especially in
the Mediterranean areas featuring irregular rainfall and high summer temperatures. Conservation
agriculture (CA) can make a significant contribution to reducing soil erosion risk on the annual
cropland (ACL) of the Mediterranean region in comparison with conventional management (CM).
The objective of this study is to provide soil loss rate maps and calculate the values for each altitude
and slope class and their combination for the Apulia region in four annual production cycles for
the scenarios CM and CA. The present study estimates the significance of the adoption of CA on
soil erosion assessment at regional scale based on the Revised Universal Soil Loss Equation (RUSLE)
model. The parameters of the RUSLE model were estimated by using remote sensing (RS) data. The
erosion probability zones were determined through a Geographic Information System (GIS) and
Google Earth Engine (GEE) approach. Digital terrain model (DTM) at 8 m, ACL maps of the Apulia
region, and rainfall and soil data were used as an input to identify the most erosion-prone areas.
Our results show a 7.5% average decrease of soil loss rate during the first period of adoption of the
four-year crop cycle—from 2.3 t ha−1 y−1 with CM to 2.1 t ha−1 y−1 with the CA system. CA reduced
soil loss rate compared to CM in all classes, from 10.1% in hill class to 14.1% for hill + low slope class.
These results can therefore assist in the implementation of effective soil management systems and
conservation practices to reduce soil erosion risk in the Apulia region and in the Mediterranean basin
more generally.

Keywords: agriculture management system; altitude; Mediterranean; remote sensing; slope; soil
loss rate

1. Introduction

Soil erosion is one of the main parameters for assessing soil quality [1–3]. It is defined
as “the movement and transport of soil by various agents, particularly water, wind, and
mass movement” [4]. In addition, soil quality is defined “the capacity of a soil to function,
within natural or managed ecosystem boundaries, to sustain plant and animal productivity,
to maintain or enhance water and air quality, and support human health and habitation” [5].
Soil erosion and soil quality are strongly correlated phenomena. Soil quality affects the
rate of soil loss and is in tum affected by it. Erosion effects on soil quality are determined
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by land use, farming system and management, spatial variability in erosional processes,
and inherent soil properties [6]. Erosion affects soil quality and productivity, reducing
infiltration rates, organic matter, nutrients, water-holding capacity, soil biota, and depth
with considerable impacts on soil environment [7,8]. Soil erosion also has a negative
impact on ecosystem services such as water quality and quantity, biodiversity, and crop
yields [9,10].

Land degradation by water mainly affects Southern Italian regions, where fragile soils
are exposed to long periods of drought followed by heavy bursts of erosive rainfall falling
on steep slopes, resulting in considerable amounts of soil loss rate [11,12].

Soil erosion by water refers to the depletion of the ground surface by water and
gravity which results in dislodgment of soil particles and their entrainment, transport,
and deposition [13]. It occurs when either rain splashes or water flows over the surface,
thus causing the particles of soil to detach and drift [14]. Climate change and intensive
agricultural practices are current drivers increasing soil erosion risk and reducing soil
functions [15,16], which result in a general degradation of soil quality [17–19]. Regions
already affected by climate change are the drought-affected areas of the EU, especially in
the Mediterranean, such as in Spain, Greece, and Southern Italy, where climate change
has already had visible impacts on yields and soils [20]. In addition, European soils suffer
from high degradation rates because of the use of intensive agricultural practices that are
unsustainable in the long term [21]. Moreover, land-use management decisions have a
direct impact on the soil loss rate, especially in arable land [22]. In 2006, the European
Commission (EC) classified soil erosion as the first among eight major threats to soil in its
topic-specific Soil Thematic Strategy [23].

Agricultural land-use practices including erosion-prone ground cover or crops pro-
viding inadequate ground cover significantly accelerate soil erosion phenomena [24,25].
Among these practices is included CM, which is based on mechanical tillage, monoculture,
or, alternatively, a crop sequence, crop residues burned, buried, or removed [26,27]. In
this context, the adoption of sustainable agricultural systems such as CA represents an
effective and viable option for reducing erosion and land degradation. CA is an agricultural
practice based on three interlinked principles: (i) continuous no or minimum mechanical
soil disturbance; (ii) permanent maintenance of soil mulch cover; and (iii) diversification of
cropping system. The adoption of CA has proved to be beneficial to the soil and to reduce
erosion, while also increasing organic matter and fertility, as well as water infiltration and
retention, thus reducing runoffs, improving water quality, and increasing water holding
capacity [28–30]. Usually, significant measurable benefits of CA in annual cropland and the
rehabilitation of soil-related ecosystem functions and services may take a longer time to
take effect—roughly three to seven years [31].

Acknowledgement of threats such as erosion, compaction, and salinization led to the
implementation of new sustainability objectives in the renewed Common Agricultural
Policy (CAP) 2014–2020 in the European Union (EU) and in accordance with the new EU
soil strategy for 2030 (https://ec.europa.eu/environment/publications/eu-soil-strategy-
2030_en, accessed on 1 November 2021) and also the Farm to Fork strategy (https://ec.
europa.eu/food/horizontal-topics/farm-fork-strategy_en, accessed on 1 November 2021).
Policies supporting CA can be found in the so-called second pillar of the CAP, which aims
to contribute “to the development of an agricultural sector of the Union characterized by a
greater territorial and environmental balance and more respectful of the climate, resilient,
competitive and innovative” and also to the “development of rural territories” (EU Reg.
1305/2013). CA regulations are defined within European policy guidelines that can be
found within the Rural Development Program (RDP) under the sub-measure 10.1 (M10.1),
whose adoption is compulsory. This measure “aims to preserve and promote the necessary
changes to agricultural practices that make a positive contribution to the environment and
climate” (EU Reg. 1305/2013). Taking stock of these considerations, the present contribution
is concerned with monitoring and evaluating how the adoption of CA contributes to reduce
or stop soil erosion risk caused by water. Several modeling approaches have been conducted
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so far to assess soil erosion, for example, the Pan-European Soil Erosion Risk Assessment
(PESERA) model and erosion rates based on runoff plot data [32,33]. However, as pointed
out by Panagos et al. [32], such models do not capture the effects of conservation practices
and their potential to mitigate soil erosion risk. Thus, even the effectiveness of policies that
promote such practices cannot be addressed adequately. On the other hand, this becomes
possible by adopting other models, such as the RUSLE, which has been used in the past
years to monitor erosion, and which is specific to the EU context [34]. Moreover, soil erosion
is one of the agro-environmental indicators adopted by the European Commission services
for monitoring agricultural and environmental policies. This model can capture the impact
of land-use changes, and thus highlight the efficacy that the European agri-environmental
policies would have on restoring soil health [32,34]. Such a model has been used to estimate
soil loss rate in several Mediterranean areas [35].

The objective of this study is to provide soil loss rate maps and calculate the averaged
values for each altitude and slope class and their combination for the ACL of Apulia region
for both the scenarios. This part of Italy suffers from heavy rainfall (fall/winter period)
as well as decreasing precipitation. Moreover, increase of temperatures and consequently
drier conditions (summer) caused by more and more evident effects of climate change and
CM pose an additional threat to Apulian cropland [36,37]. Our approach is based on the
RUSLE-GIS-GEE framework [3,38], using more suited databases at regional scale. This
could provide greater detail and accuracy in calculating soil loss rate for ACL, separately
for the two management systems: CM and CA for the period 2016–2020, following the
introduction in 2016 of the specific sub-measure M10.1 “Conservation Agriculture”, in
which only a part of the farmers participated, being a voluntary measure.

2. Materials and Methods
2.1. Study Area

The Apulia region (Figure 1) is situated in the southeastern part of the boot-shaped
Italian Peninsula bordering the Adriatic and Ionian seas along the east and southeast coasts,
respectively. The region is divided into 257 municipalities grouped into five provinces
and covers a surface area of approximately 19,500 km2. The region is characterized by
low mountains located in the Gargano promontory and in the Daunian Sub-Apennine,
respectively, in the north and east of the Foggia province; the Tavoliere plain (the second
largest plain in Italy), which extends for 3000 km2 in the central and southern part of the
Foggia province; and the Murgia plateau, which covers a surface of 4000 km2 between
the provinces of Barletta–Andria–Trani and Bari [39]. The Apulia region features hot
and dry summer seasons, as well as mild and rainy winter seasons typical of semiarid
Mediterranean climate. Annual precipitation varies between 450 and 550 mm in much
of the region (two-thirds concentrated from autumn to winter). The highest values of
precipitation, with more than 900 mm y−1, are observed in the Gargano area, in the
province of Foggia, whereas the lowest values, around 400 mm y−1, are observed in the
Tavoliere plain. The hydrological regimes are irregular, of torrential type, with high stream
and river flow rates during the rainy season and practically no water flow in summer [37].
Agriculture plays a very important role in the economic context of the Italian territory; this
region is second in terms of production of olive oil, wine, and fresh vegetables. Particularly
important is the production of durum wheat in the Tavoliere plain, orchards (cherries and
figs) near Bari, and tobacco in the province of Lecce [40]. Durum wheat and, in general,
cereals (barley, rye, oats) are the most important typical ACL in Apulia region. For ACL in
Southern Italy, the period between 15 October to 1 August corresponds approximately to
the period from sowing to harvesting.
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spatial data needed to build the RUSLE-GIS-GEE framework in a comprehensive and ro-
bust cloud-based environment. GEE’s capabilities can be used to process large amounts 
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are Taranto (TA), Brindisi (BR), Lecce (LE), Foggia (FG), Bari (BA), and Barletta–Andria–Trani (BAT).

2.2. Soil Loss Modeling: RUSLE Factors

The RUSLE model has been widely used for both agricultural and natural land to
estimate annual soil loss rate and to evaluate soil erosion risk [41,42]. This model is accurate,
easy to apply, and needs a moderate amount of data. Its usage has increased over the past
few decades, particularly with the increase of RS and GIS applications [43,44]. The advent of
RS and GIS application has increased the interest in developing new methods of calculation
and sharing data, using cloud-computing platforms. GEE was developed as an open-source
platform for analyzing geospatial data. GEE has been used worldwide for retrieving and
processing many Earth observation data, which nowadays cover all geospatial data needed
to build the RUSLE-GIS-GEE framework in a comprehensive and robust cloud-based
environment. GEE’s capabilities can be used to process large amounts of geospatial data:
especially, with improvements in these data’s availability and processing time, for this
reason, it is successfully used in several fields on both regional and global scales [45–47]. In
the current study, soil loss rate estimation based on RUSLE was implemented in the GEE
environment to increase the ability to determine susceptibility to erosion risk.

The RUSLE model [48,49] was used to estimate the soil loss rate for the scenarios for
the CM and CA system in the Apulia region with limited annual cropland for the first
period of adoption (2016–2020). RUSLE provides an ideal framework to assess soil loss rate
and its factors for both the scenarios. Specifically, RUSLE considers support practices (P),
rainfall (R), soil erodibility (K), topography (LS), and cover management (C) as important
factors affecting soil loss rate. RUSLE can be mathematically expressed as

A = R × K × LS × C × P (1)

where A (Mg ha−1 y−1) is the longtime average annual soil loss rate, R (MJ mm h−1 ha−1 y−1)
is the rainfall erosivity factor, K (Mg h MJ−1 mm−1) is the soil erodibility factor, LS (unit-
less) is the slope length factor and slope steepness factor, C (unitless) is the land cover
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and management factor, and P (unitless) is the soil conservation or prevention practices
factor [49].

2.2.1. R-Factor

R-factor is an index of rainfall erosivity that quantifies the potential capacity of rain to
cause erosion [49]. The factors that are affected by rainfall erosivity are amount, intensity,
terminal velocity, drop size, and drop size distribution of rain [50]. For a given location, it
is the long-term average of the annual Raj values which, in turn, are given by the sum of all
the erosion index (EI) single-storm EI30 values for year j [51].

The annual rainfall-runoff erosivity (R-factor) values (MJ mm h−1 ha−1 y−1) for Italy
were computed by the following equation [51]:

R =
1
N

N

∑
1

EI30−annual (2)

where N is an N-year period, and EI is the rainfall erosivity index (MJ mm ha−1 h−1),
expressed as

EI30−annual = 12.142(abc)0.6446 (3)

where the variables a, b, and c are the annual precipitation, the maximum annual daily
precipitation, and the maximum annual hourly precipitation, respectively—all expressed
in centimeters. Variable a represents less erosive precipitations, with a cumulative effect
over a long period. Variables b and c describe very erosive effects due to extreme rainfalls
in storms and heavy showers.

This study estimated the R-factor based on ERA5-Land (E5L) gridded weather data,
freely available as product of the Copernicus Climate Change Service (C3S). The E5L is a
high-resolution reanalysis dataset which covers the period from 1981 to present on a regular
grid with a spatial resolution of 0.1◦ × 0.1◦ latitude–longitude referred to as geographic
coordinate system WGS84 (EPSG:4326), corresponding to a horizontal resolution of 9 km.
The data are provided with an hourly time-step and released with a delay of 2–3 months
from present.

All grid cells (for a total of 231) located in the Apulia region were considered for
retrieving total hourly precipitation (estimated in millimeters, mm) for the period from
January 1981 to December 2019. The accumulated precipitation values were processed
to derive the total hourly precipitation (mm) from 00 UTC to the hour ending at the
forecast step.

The R-factor was calculated as average of EI yearly values regarding four N-year
periods: 1981–2016, 1981–2017, 1981–2018, and 1981–2019. R-factor descriptive statistics,
such as minimum, maximum, standard deviation, and weighted average values, for the
Apulia region were estimated, and the results are listed in Table S1. Data processing was
performed through R (R Core Team, 2020). For RUSLE calculation (see Section 2.4), the
results obtained for R-factor were projected into the EPSG: 3035 reference system and
then masked for the ACL 2015 (1981–2016) and for ACL 2018 (1981–2017, 1981–2018, and
1981–2019) in GEE (Table S1).

2.2.2. K-Factor

The K-factor is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), an empirical
parameter based on the measurements of specific soil erodibility [52]. This parameter is
measured based on these soil properties: texture, organic matter, structure, and permeability
of the topsoil profile [53]. In this study, the reference value of K-factor is the one obtained
from the “Soil Erodibility in Europe High Resolution dataset” [53] provided by the Joint
Research Center (JRC) of European Soil Data Centre (ESDAC) and clipped for the Apulia
region by using QGIS. The K-factor is estimated for the 20,000 field sampling points (133
for Apulia region) included in the Land Use/Cover Area frame (Land Use and Coverage
Area, LUCAS) survey [54] and then interpolated with a Cubist regression model [55] using
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spatial covariates such as remotely sensed data and terrain features to produce a 500 m
resolution K-factor map of Europe [53].

2.2.3. P-Factor

Support practice (P-factor) is an expression of the effects of agricultural management
practices that reduce the erosion potential of runoff by influencing drainage patterns and
the concentration and velocity of runoff [52]. The adoption of supporting conservation
practices decreases the p value, which ranges between 0.2 (terraces with reverse slope)
and 1.0 (no erosion control practices). The average value is estimated at around 0.95 in
agricultural land, and for the EU it is estimated at 0.97. This effect is considerably greater in
sensitive regions such as the Mediterranean area, although the reduction rate can generally
be relatively small when adopting supportive practices [56]. In the present study, the
reference value of P-factor is the one obtained from the EU datasets [57] provided by the
JRC’s ESDAC with 1 km resolution, and then clipped for the Apulia region by using QGIS.

2.2.4. LS-Factor

In the RUSLE model, the L and S factors represent the influence of the terrain topog-
raphy on the sediment transport capacity of the overland flow [52]. Slope length (L) is
defined as the point where overland flow starts to the point in which deposition occurs
or runoff waters are channelized [58]. Slope steepness (S) describes how erosion increases
with slope angle [58]. The combined LS-factor (dimensionless) describes the potential of
surface runoff in accelerating soil loss rate, and, in most studies, determines the spatial
resolution (cell size) of the modeled soil loss estimates. The topographic LS-factor was
calculated by using the 8 m high-resolution DTM provided by the Apulia region (available
on http://www.sit.puglia.it, accessed on 1 November 2021).

The LS-calculation was performed by using the equation proposed by Desmet and
Govers [59]:

Li,j =

(
Ai,j + D2)m+1 − Am+1

i,j−in

Dm+2 ∗ xm
i,j ∗ 22.13m (4)

where Ai,j−in is the contributing area at the inlet of grid cell (i,j), measured in m2. D is the
grid cell size (meters), Xi,j = sinαi,j + cosαi,j, the αi,j is the aspect direction of the grid cell (i,j).
This equation was implemented by using the System for Automated Geoscientific Analyses
(SAGA) software in QGIS, which incorporates a multiple flow algorithm and contributes to
a precise estimation of flow accumulation [58]. It provides a comprehensive set of modules
for data analysis, focusing on DTMs and terrain analysis [60,61]. A multiple flow algorithm
present in SAGA (LS-factor field based) allows the calculation of LS-factor [58].

2.2.5. C-Factor

Among the inputs of RUSLE, the cover and management factor (C-factor) is the
one most sensitive factor [62] that ranges between 0 and 1. The C-factor follows plant
growth and rainfall dynamics [52,63] and can be managed by farmers and managers
to control soil erosion in agricultural activities [34]. The C-factor represents the effect
of cropping and management practices on soil erosion by water [49]. The decrease of
the C-factor can be promoted by changing the amount of vegetation cover and tillage
practices and soil management measures (e.g., reduced or no tillage and cover crop residues)
that protect the soil surface, disperse raindrop energy, and reduce surface runoff [34,49].
Land-use types, crop rotation, and cultivation and management practices show obvious
spatial and temporal variations that affect the accuracy of the C-factor estimate, ultimately
affecting soil loss rate estimated by RUSLE [64,65]. Therefore, it is necessary to improve
the ability to capture the space–time dynamics of the C-factor. In our study, to estimate the
C-factor within the ACL of the Apulia region, we started from the equation proposed by
Panagos et al. [34]:

Carable = Ccrop × Cmanagment (5)

http://www.sit.puglia.it
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where Ccrop is the C-factor based on the crop composition of an agricultural area, and
Cmanagement quantifies the influence of management practices (reduced tillage, cover crop,
and crop residues) on soil loss rate reduction. With regard to Cmanagement, the combined
effect of tillage practice (Ctillage), plant residues (Cresidues), and cover crops (Ccover) was taken
into account for the estimation of management factor [34]:

Cmanagment = Ctillage × Cresidues × Ccover (6)

where a value of 0.176 was used for CA. This value was derived from the multiplication of
the three factors adopted for CA (Ctillage = 0.25; Cresidues = 0.88; Ccover = 0.80) [34], while a
value of 1 was used for CM, in accordance with the multiplication of three factors adopted
for CM (Ctillage = 1; Cresidues = 1; Ccover = 1) [34].

Instead, Ccrop was estimated by taking into account the Normalized Difference Vegeta-
tion Index (NDVI), as proposed by van der Knijff et al. [12], for regional-scale applications:

Ccrop = exp
[
−α

NDVI
(β − NDVI)

]
(7)

where α and β are parameters of the NDVI-C correlation. An α-value of 2 and a β-value of 1
seem to give reasonable results, because these values permit achieving a linear relationship,
according to van der Knijff et al. [66]. This method has been employed by several studies
worldwide [67–70]. In the present work, the C-factor was calculated for Apulia ACL
as follows:

C = exp
[
−α

NDVI
(β − NDVI)

]
× Cmanagement (8)

For the calculation of C-factor’s NDVI, GEE provides Sentinel-2 images that have
a resolution of 10 m and are available for the two layers: bottom of atmosphere (BOA),
level 2A) and top of atmosphere (TOA), level 1C). The TOA level is not provided with
atmospheric correction, while the BOA level has atmospheric correction due to Sen2Cor [71].
The noncorrect atmospheric images have been continuously available since the launch of the
satellite (23 May 2015), while the corrected ones have been available since 28 March 2017. As
shown in the literature [72,73], there is a correlation between vegetational indices calculated
at the two different layers (NDVI BOA > NDVI TOA). Subsequently, the correction factor
between NDVI is calculated at the two levels, without which the C-factor would have
been underestimated. We proceeded by calculating the NDVI Sentinel-2 at level 2a over
the whole region for the interval from 1 April 2017 to 28 January 2021, by taking into
consideration 2033 images in which NDVI was calculated both at the BOA and TOA level.
The correction factor shows an average increase between TOA and BOA of 27% in the
whole Apulia region and an increase of 29% in ACL. For the period 2016–2017, NDVI
is calculated by using NDVI level 1c added to correction factor. The annual interval for
each NDVI calculation is considered for the period between 15 October to 1 August of the
following year, as it corresponds approximately to the period from sowing to harvesting in
Southern Italy. Table 1 reports the number of images that have a cloudy pixel percentage
lower than 20% and are processed for the calculation of each NDVI. Finally, the calculation
of the two factors, C crop [38,74] and C management, and their multiplication, is possible
in GEE environment.

Table 1. C-factor and NDVI values of ACL of the four cycles and two management systems.

Agricultural Seasons Images (n) Mean of NDVI (15/10–01/08) Cfactor CM Cfactor CA %

2016–2017 309 0.3653 0.3268 0.3122 −4.5
2017–2018 415 0.3995 0.2742 0.2623 −4.3
2018–2019 408 0.3985 0.2803 0.2684 −4.2
2019–2020 449 0.4078 0.2656 0.2552 −3.9

Mean 0.3928 0.2867 0.2745 −4.2

CM = conventional management. CA = conservation agriculture. NDVI = Normalized Difference Vegetation Index.
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2.3. Identification of ACL

ACL areas are calculated using LUCAS points, which is a network that gives accu-
rate and detailed information, it aims at computing statistical estimates at EU level with
fine scale [75], and it collects information on European land. This examination provides
spatial information that can be used for agricultural goals and to define the impact on the
environment and natural resources. Each LUCAS point collects information including
land cover, land use, and environmental parameters, identified as microdata [76]. For
the calculation of crop land, LUCAS microdata was used (from class B10 to class B50).
These data are available online and both are downloadable; for the year 2015 (https://ec.
europa.eu/eurostat/web/lucas/data/primary-data/2015, accessed on 1 November 2021),
for the year 2018 (https://ec.europa.eu/eurostat/web/lucas/data/primary-data/2018,
accessed on 1 November 2021). The areas were calculated in QGIS (QGIS.org, 2021, QGIS
Geographic Information System, QGIS Association. http://www.qgis.org, accessed on
1 November 2021) following Gallego and Bamps [75]. ACL, mapped by LUCAS in the
Apulia region, resulted in 733,801 ha and 773,828 ha for 2015 and 2018, respectively. Subse-
quently, areas detected by LUCAS were mapped by using Global Land Cover [77,78] in
Google Earth Engine [79]. In Global Land Cover, cultivated areas are aggregated into crop
land. The separation between ACL and crop land is performed through a multitemporal
analysis, by using the LANDSAT8 Collection 1 Tier 1 composite dataset (https://developers.
google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_NDVI, ac-
cessed on 1 November 2021) which allows the calculation of the averaged NDVI—using six
images for 2015 and six images for 2018. This allows the creation of a mask to distinguish
ACL from croplands, setting the threshold between 0.08 and 0.30 during summer periods
(1 July–15 August), in which differences between these two categories are more evident
in Mediterranean areas. This threshold guarantees significant difference to areas detected
by LUCAS. This analysis makes it possible to map ACL areas—732,052 ha for 2015 and
772,654 ha for 2018, respectively (Figure 2), with a difference of 40,602 ha between 2015 and
2018 ACL.

The boundaries of the area under CA are provided by AGEA (Italian Agricultural
Payments Agency), and the total area corresponds to 25,506 ha (Figure 3).
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Figure 3. Annual cropland of the Apulia region in 2018 under conventional management (CM) and
conservation agriculture (CA). Hill shade calculated using NASA DEM 30 m (https://lpdaac.usgs.
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2.4. RUSLE Factors Multiplication

The multiplication of all the RUSLE factors was carried out in GEE, carrying all the
factors to the same resolution scale, 10 m resampling, and reducing resolution for each
factor by using bilinear interpolation, and with the same EPSG:3035 reference system
(Figure 4). RUSLE is calculated for four consecutive annual production cycles, as shown
in Table S2.

For an optimal understanding of RUSLE distribution in the Apulia region, altitudes
and slopes were calculated by using DTM in GEE. Altimetry was classified in three
categories (according to the Italian Institute of Statistics—ISTAT, https://www.istat.
it (accessed on 1 November 2021), based on their altitude above sea level: plain
(0 ≤ altitude ≤ 300 m a.s.l.), hilly (300 < altitude < 800 m a.s.l.), and mountain (alti-
tude ≥ 800 m a.s.l.). Each of these three categories are designated to a numerical class: 100
for the plain, 200 for the hilly, and 300 for the mountain. The slope’s division in categories
is carried out by dividing the slope range into three quantiles: low slope (under 1.8%),
medium slope (1.8–3.7%), and high slope (over 3.3%). Each class was renominated by using
a number: 1 for low slope, 2 for medium slope, and 3 for high slope. Moreover, the two
categories were combined to obtain nine classes for both the scenarios (Table S3). As a final
step, the statistics for each category were calculated.

https://lpdaac.usgs.gov/products/nasadem_hgtv001
https://lpdaac.usgs.gov/products/nasadem_hgtv001
https://www.istat.it
https://www.istat.it
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3. Results and Discussion
3.1. Rainfall Erosivity (R-Factor)

The average annual R-factor for the Apulia region in the 1981–2019 year-period to-
tals 318.3 MJ mm h−1 ha−1 y−1, with a standard deviation of 57.4 MJ mm h−1 ha−1 y−1

(Table S1). If we consider all the year-periods, the annual average values of the erosive
storm ranged from 198.8 to 504.2 MJ mm h−1 ha−1 y−1 for the 1981–2017 and 1981–2019
year periods, respectively. The Apulia region values are more than twice lower than the
average R-value obtained by the 1290 non-Italian stations (723 MJ mm h−1 ha−1 y−1) con-
tained in the Rainfall Erosivity Database on the European Scale (REDES) (Borrelli et al. [80];
Panagos et al. [81]). Considering the ACL of the Apulia region, R-factor ranged from 280.4
to 284.4 MJ mm h−1 ha−1 y−1 (1981–2016 and 1981–2019, respectively) (Table S1; Figure 5).
The high R-factor corresponds to mountain areas (Figure 5) proximity to the Daunian
Sub-Apennine, in the province of Foggia in the northwest, and to the Murgia plateau in the
provinces of Barletta–Andria–Trani and Bari.
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Figure 5. Maps of rainfall erosivity factor (R) of Apulia region with Era-5 land (9 km resolution) for
the periods (a) 1981–2016, (b) 1981–2017, (c) 1981–2018, and (d) 1981–2019.

3.2. Soil Erodibility (K) and Support Practice Factor (P)

The spatial variation of K-factor values from the ESDAC dataset in the Apulia region
depend on the variation of ACL area for both years. The results showed a mean value of
0.0331 t ha h ha−1 MJ−1 mm−1 for 2015 (Figure 6a) and 0.0329 t ha h ha−1 MJ−1 mm−1 for
2018 (Figure 6b).
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In both years, the highest value of K-factor is distributed in the areas of Tavoliere
and in the Daunian Sub-Apennine, in the province of Foggia in the northwest, and in
the Murgia plateau in the provinces of Barletta–Andria–Trani and Bari. From the ESDAC
dataset for the P-factor, it was possible to extrapolate factors for the ACL area for both years.
The P-mean for 2015 is 0.8736, and for 2018, 0.8682. In both maps (Figure 7), the higher
values are found in the mountainous regions where the CA system is mainly applied.
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Figure 7. Support practice factor (P) maps of the Apulia region for annual cropland in (a) 2015 and
(b) 2018.

3.3. Topographic Factor (LS)

LS-factor is calculated for the ACL of the Apulia region. The averaged values (Figure 8)
are 0.93 and 0.88 for 2015 and 2018, respectively.
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Figure 8. Slope length and steepness (LS) factor map of the Apulia region for annual cropland in
(a) 2015 and (b) 2018.

The high LS values are found in the mountainous area with steep topography, espe-
cially in the west where mountains are prevalent (Daunian Sub-Apennine and Murgia),
while the lowest values are distributed along the Adriatic and Ionic coasts. To determine the
spatial resolution (cell size) of the soil erosion model results, and, therefore, to incorporate
the soil erosion potential due to surface runoff, we used a high-resolution (8 m) DTM
of the Apulia region to calculate LS-factor. This resolution of Apulia region DTM is the
best available at regional scale. Generally, the DTM resolutions used on a European scale
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are in the range of 25 to 100 m [56], while at regional scale, the resolutions range from
5 m to 40 m [82,83]. As reported by Bircher et al. [84], several authors have mentioned
the importance of assessing the risk of soil erosion based on the size of the cells and the
accuracy of the DTM. The risk that can occur is that a low DTM resolution (large cells) is
not able to map relevant topographic details [85–87].

3.4. Cover-Management (C-Factor)

The four-year mean for the C-factor values of the two management systems is shown
separately for each year and crop stage in Table 1. The four-year mean C-factor for CM in
ACL of the Apulia region is 0.2867, while for the CA it is 0.2745, with an average percentage
reduction of the C-factor of 4.2% according to the cropping system adopted. The lowest
C-factor values for CM and CA were registered both in the year 2019/2020 (0.2656 and
0.2552, respectively), while the highest were in the year 2016/2017 (0.3268 and 0.3122,
respectively; Supplementary Figures S1 and S2). The four-cropping cycle average of NDVI
for the study site varied from 0.3653 to 0.4078 (in 2016/2017 and 2019/2020, respectively)
with an average over 0.3928. The ground-cover percentage was directly measured in all
ACL with 10 m resolution. Based on the two management systems in the study area, higher
C-values were observed in the CM management system, thus indicating higher potentiality
for soil erosion risk in these areas (Figure 9). Spatiotemporal dynamics are required to
understand impacts and risks at regional scale. For this reason, it is necessary to identify
the agricultural area that can be most affected by soil erosion by water and identify, where
possible, which CA system will reduce these processes.
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Figure 9. Cover and management (C) factor average maps (2016–2020) of the Apulia region under
(a) conventional management and (b) conservation agriculture for annual cropland.

Our approach was focused on the use of multitemporal satellite images to capture the
temporal variability of the determination of factor C. This approach is used for ecosystem
modeling studies on a large scale [34,88] and places the focus on the importance of explicit
consideration of temporal variability on soil management systems to protect agricultural
land from the impact of soil erosion by water [89]. Generally, in large-scale modeling
applications, the estimation of multiple sub-factor C parameters is derived from pre-
existing literature [34,89,90] and does not use spatially explicit land-cover data for the
determination of the C-factor; it is, rather, based on statistical data. Current approaches
on a European scale adopt the CORINE Land Cover Database for the calculation of the
C-factor [12]. This data is inadequate in its spatial and thematic resolution compared to
RS sensors with up-to-date information on proximal measures of vegetation, which is a
key aspect for a correct and accurate calculation of C-factor [22]. This aspect becomes even
more important for areas where the spatial and temporal dynamics of the vegetation cover
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are provided by the cultivation of crops [83,91]. On the other hand, data obtained from
field experiments carried out to measure the values of the C-factor take a long time and are
rarely available [22].

Within this work, by using a spatial resolution of 10 m (obtained through Sentinel 2A)
and applying the formula proposed by Van der Knijff et al. [12] integrated with that of
Panagos et al. [34], we obtained a more detailed resolution on the ACL (previously mapped)
to multitemporal NDVI calculation. This NDVI-derived method can variably capture the
actual soil cover status [82] rather than using aggregate and fixed data over time. This
approach can be useful in increasing the accuracy of the calculation of the C-factor [67,92,93].
Our results show how, for the estimation of the C-factor in the Apulia region, the values are
comparable to those present in the literature for ACL [67,74,94,95], which fluctuate between
0.01 and 0.44 for ACL, but with a much more accurate regional scale of detail. Concerning
the difference between the CM and CA systems, our results demonstrate how, on average,
the adoption of CA reduces the C-factor by 4.2% in line with other analyzed scenarios [34].
CA has been reported in many studies as an effective strategy to control erosion processes,
maintain soil fertility, increase soil carbon sequestration, and improve cropping system
sustainability [96–98].

3.5. Soil Loss Estimation in the Apulia Region
3.5.1. Loss Rates

The loss rates (A), in t ha−1 y−1, for the Apulia region in this study are generated
by using the RUSLE model to calculate the mean for the 2016–2020 period. The results
are shown in Table 2. The four-year agricultural annual crop cycle average for CM is
2.28 t ha−1 y−1, while for CA it is 2.11 t ha−1 y−1 (Figure 10).

Table 2. RUSLE values for the 2016–2020 period in the Apulia region for each management system.

RUSLE

CM CA

Agricultural Seasons 2016–2020 t ha−1 t ha−1 ∆%
Mean 2.28 2.11 −7.5

CM = conventional management. CA = conservation agriculture. RUSLE = Revised Universal Soil Loss Equation.
∆% = percentage difference.
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Moreover, for the intermediate RUSLE calculation, the lower and higher values for
CM system are 2.02 and 2.69 t ha−1 y−1, while for CA system, are 1.88 and 2.49 t ha−1 y−1
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for the two-year periods 2019/2020 and 2016/2017, respectively. These patterns are shown
in Supplementary Figures S3 and S4 and Table S4.

Interestingly, the areas featuring high risk of soil erosion are in the Tavoliere and in the
Daunian Sub-Apennine, in the northwest, as well as in the Murgia plateau in the center of
the Apulia region. As for the soils under CA, there is instead a reduction in soil erosion risk
in the same areas as well as in the south of the Apulia region (Salento, province of Lecce).

Current results from the RUSLE model reveal a serious soil erosion risk where the
CM system is adopted, while the CA system showed a trend over the years to contain the
rate of soil loss for ACL in the Apulia region, representative of pedoclimatic conditions
widely present in large agricultural areas of the Mediterranean basin. As suggested by
Wischmeier and Smith [52], practices of improved tillage, such as no-till and cover crops,
were considered as conservation cropping and management practices and implemented
in the C-factor. A recent scenario analysis carried out on 54 countries, that reported
information on the implementation of CA to the Food and Agriculture Organization of
United Nations (FAO), assumes a 45% reduction of soil erosion risk in CA compared to
CM [99]. Furthermore, a previous study by Borrelli et al. [100] shows how in Italy, when
good agricultural and environmental conditions (GAEC) including CA are adopted, there
is a potential to reduce erosion by 8.5%, while for the Apulia region, the potential rate of
erosion is 5%. The results obtained (Table 2) at this territorial scale are in line with this
scenario and, moreover, by improving the spatial resolution of DTM (8 m), the erosion rate
calculated over the four years (2016–2020) shows an average of 7%, in line with the scenario
assumed for the Apulia region.

3.5.2. Mean Loss Rates for Altitude and Slope Classes

RUSLE values were calculated for altimetric and slope classes for each agricultural
annual crop cycle (Table 3).

The erosion rate is variable across the regional territory because the pedological and
climatic variability is high, but even more so is the morphology of the Apulia region, which
is also found in the discontinuous adoption of CA. In the Apulia region, the ACL lying on
plain (0 ≤ 300 m a.s.l.) and hilly (300 m < 800 m a.s.l.) areas covers 99% of the surfaces, and
about 36% of the study areas is located on slopes greater than 3.7%. In our study, with the
introduction of the CA management system, the soil loss rate in these areas ranged from
−1.7% for the plain + medium slope terrain to −18.8% for the mountain + low slope terrain,
with an overall average of all terrain classes considered, during the four years, of −8.5%.

In the plains, 68% of the total ACL is present, and in four years, the contribution of
CA can reduce the soil loss rate by −3.7%, compared to the CM system. For the hilly areas
(32% of the total ACL), the erosion rate decreases by −10.1% when CA is adopted. ACL
distributed in the slope classes are very similar, and the contribution of CA is higher on the
high slopes, decreasing the erosion rate by −7.6% compared with the CM system, according
to the scenario analysis for Italy by Borrelli et al. [100].

3.5.3. Combination of Altitude and Slope Classes

In the combination of altitude and slope classes, the highest effect is on the hilly + low
slope and hilly + medium slope. The CA management system contributes, respectively,
−14.1% and −12.2% to the erosion rate over the four years, compared with CM. These
values are in line with the scenario proposed by Panagos et al. [101], in which a projection
of soil loss by water erosion in Europe by 2050 is calculated, and it is reported that there
will be a potential of reduction of soil losses of 17–22% with the contribution of reduced
tillage combined with cover crops. This scenario is confirmed by the results of Table 3, in
which the highest absolute values of soil loss rate containment are obtained for the altitude
and slope classes in which CA is currently marginally adopted.
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Table 3. RUSLE calculation for each altitude and slope class and their combination of the two management systems in four years in the Apulia region.
CM = conventional management. CA = conservation agriculture. RUSLE = Revised Universal Soil Loss Equation. ∆% = percentage difference.
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303 Mountain +
high slope 0.56 5.89 4.84 −17.8 0.43 2.74 2.47 −9.9 2.85 2.90 1.8 2.94 2.65 −9.9 −8.9
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4. Conclusions

Soil erosion is among the most critical environmental hazards of modern times. Vast
areas of Mediterranean land now being cultivated with CM may be rendered unproductive,
or at least economically unproductive, if erosion continues unabated. Soils cultivated
with annual crops in Mediterranean climatic conditions under conservative agriculture
can benefit from a permanent cover for the direct increase of surface water infiltration,
significantly reducing surface runoff and therefore soil erosion risk.

In order to estimate soil loss rate at regional scale, empirical models are accurate
and easy to interpret and require modest resources. They can be processed with readily
available inputs to identify areas exposed to high risk of erosion. In this study, RUSLE
models integrated with GEE and QGIS were used to estimate soil loss rate on the ACL of
the Apulia region for a period of four annual crop cycles—from 2016 to 2020—for both
the scenarios.

Results show that where the CA system is applied continuously in ACL, there is an
annual average reduction of soil loss rate over 7% compared with CM; furthermore, it
is significatively different for altimetric, slope, and combined classes, showing that the
important contribution of the CA system can reduce soil loss rate in hilly areas by 10.1%
and in hilly + low slope terrain by 14.1%. These results represent a baseline to estimate the
effects of the adoption of the specific agro-environment-climate measure on soil erosion
risk during the first phase of transition from conventional to conservation management
systems. Consequently, the results of this study can represent an objective target baseline
for the planning of the new CAP 2023–2027, which provides for the selection of reliable
concrete and achievable result indicators, including erosion by water, whose values can
be monitored and verified periodically. The goal is to increase the agricultural area under
CA in the Apulia region and in those areas with semiarid Mediterranean climate where
there is greater loss of soil due to water erosion. Such data, which should be monitored
periodically, could be used to evaluate soil conservation management planning processes,
and help determine the dimension and duration of a transition phase to support farmers in
providing ecosystem restoration services, reduction of erosion by water, and improvement
of soil healthy and agricultural productivity.
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