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Abstract

Cover crops (CCs) have shown great potential for suppressing annual weeds within agronomic
cropping systems across the United States. However, the weed suppressive potential of CCs may
be moderated by environmental and management factors that are specific to certain geographic
areas and their associated characteristics. This may be particularly true within the U.S.
Southeast, where higher mean annual temperature and precipitation generate favorable con-
ditions for both CC and weed growth. To understand the effects of this regional context on
CCs and weeds, a meta-analysis examining paired comparisons of weed biomass and/or weed
density under CC and bare ground conditions from studies conducted within the Southeast was
conducted. Data were identified and extracted from 28 journal articles in which weed biomass
and/or weed density were measured along with cash crop yield data, if they were provided.
Fourteen studies provided 142 comparisons for weed biomass; 23 studies provided 139 com-
parisons for weed density; and 22 studies, pooled over both weed response variables, provided
144 comparisons for cash crop yield. CCs had a negative effect on weed density (P = 0.0016) but
no effect on either weed biomass (P =0.16) or cash crop yield (P = 0.88). The mean relative
reduction in weed density under CCs was 44%. Subsequent analyses indicated that CC biomass
was the key factor associated with this reduction. Weed density suppression was linearly related
to CC biomass; a 50% decrease in weed density was associated with 6,600 kg ha™! of CC bio-
mass. Edaphic, geographic, and other management factors had no bearing on this suppressive
effect. This highlights the importance of generating adequate CC biomass if weed suppression is
the primary objective of CC use and the potential for CCs to reduce weed density over diverse
soil, climate, and farm management conditions.

Introduction

The U.S. Southeast is a geographically and edaphically diverse region typified by high relative
temperatures and humidity coupled with mild winter conditions that are favorable to plant
growth (Konrad and Fuhrmann 2013). From an agronomic perspective, the Southeast region
comprises widely grown field crops such as corn (Zea mays L.) and soybean [Glycine max [L.]
Merr.], in addition to those that are predominantly grown in this region, such as cotton
(Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) (Asseng 2013; Knox et al. 2014).
Given the biophysical context of the region, weeds are ubiquitous, and infestations can be severe.
Weed management in agronomic crops in the Southeast is based almost exclusively on herbi-
cide-centric approaches (Norsworthy et al. 2012; Price et al. 2016b). While herbicides are a
highly effective management tool, their efficacy is continually threatened by the potential for
selecting herbicide-resistant weed biotypes (Menalled et al. 2016; Neve et al. 2014). The likeli-
hood of this phenomenon is proportional to weed population size and the selection pressure
imposed by herbicide (Menalled et al. 2016; Neve et al. 2014). Using ancillary practices that both
limit selection pressure and maintain small population size are essential to the ongoing challenge
of weed management in the Southeast region (Hand et al. 2021; Norsworthy et al. 2012; Price
etal. 2016a). The deliberate use of varied practices that differ in the selection pressure that they
impose on weeds is a central tenet of integrated weed management (IWM) approaches (Harker
2013; Menalled et al. 2016; Neve et al. 2014).

One such practice, the use of cover crops (CCs), has been studied extensively as a cultural
tactic to limit weed germination, emergence, and growth (Teasdale 2018). CCs have been shown
to alter these processes by altering light quantity and quality, providing a physical barrier, and
increasing seed predation, among others (Teasdale 2018). CC use has steadily increased in the
Southeast region, particularly in the last 10 to 15 yr (Wallander et al. 2021). While much of this
recent uptick in adoption may be related to potential CC-based improvements around soil ero-
sion and moisture retention, research has shown that the weed suppression-related benefits of
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this practice are important features of sustained CC use by farmers
(Hancock et al. 2020). This has become increasingly true in the
Southeast region, given the ongoing difficulty in managing several
highly problematic weed species that have developed resistance to
many commonly used herbicide sites of action. However, under-
standing if CCs provide weed-suppression benefits and what key
factors either attenuate or amplify their ability to do so is critical
to their success and continued adoption as a weed management
practice.

Both global and regional meta-analyses on the effect of CCs on
weeds have supported their potential as a weed management prac-
tice, but results have differed based on management and study
scope (Nichols et al. 2020; Osipitan 2018; Osipitan et al. 2019).
For example, Osipitan et al. (2019) found little to no difference
in the suppressive ability of different CC species when looking
at studies on a global basis across both agronomic and horticultural
production systems, while Nichols et al. (2020) found that only
grass CC species had a significant effect on the reduction of weed
biomass within agronomic cropping systems of the U.S. Midwest.

Given the potential for context dependencies, we were inter-
ested in understanding how well CCs suppress weeds within agro-
nomic cropping systems of the Southeast, focusing on weed
biomass and weed density as response variables. We conducted
a meta-analysis to explore the effects of CCs on weeds in the
Southeast region and the moderating effect of a variety of factors
on potential CC-based weed suppression. Specifically, we sought to
answer the following questions: (1) Do CCs suppress weed biomass
and/or weed density? (2) What is the magnitude of this effect? (3)
Under which contexts is this effect greatest? (4) To what extent do
trade-offs exist between weed suppression and cash crop yield?

Materials and Methods
Literature Search and Data Extraction

A systematic search of the literature was conducted using the Web
of Science Core Collection, CAB Abstracts, and BIOSIS databases.
The search was conducted from June through August of 2020 using
the following Boolean string: (“weed management” OR “weed con-
trol” OR “weed science” OR “weed suppression”) AND “cover
crop” OR “catch crop” OR “green manure”. An initial selection cri-
terion required that all literature be peer reviewed and that studies
were conducted in one of the nine U.S. Department of Agriculture—
Agriculture Research Service Southeast (USDA-ARS SE) states
within the contiguous United States; this region includes
Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi,
North Carolina, South Carolina, and Tennessee (https://www.
ars.usda.gov/southeast-area). Further filtering was based on iden-
tifying journal articles that measured the response variable weed
biomass (WBIO) or weed density (WDEN) and measured said
response variables in the same crop, at the same time point, with
all management activities being identical, save for the presence of a
fall-planted CC. The specifics of the literature search are docu-
mented in a PRISMA flowchart (Figure 1).

Paired comparisons of WBIO or WDEN were extracted from
tables and/or figures within our selected journal articles. When
data were presented solely in figure format, the GetData graph digi-
tizer (http://getdata-graph-digitizer.com) was used to extract rel-
evant data. For WDEN, if measurements were taken at multiple
time points in a season, we either extracted data from the final
WDEN measurement, if that value represented a cumulative sea-
sonal total, or summed all values to generate a value for the
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cumulative seasonal total. For each comparison, we also extracted
data for cash crop yield (CY), if provided. Relevant study informa-
tion was extracted and assessed as potential moderator variables.
Examples of relevant information include study duration and
experimental design, geographic and pedological specifics, CC
management details (CC species, type, planting method, termina-
tion method, termination date, biomass at termination), and the
type of weeds present in a study.

Data Analysis

The response variables WBIO, WDEN, and CY were transformed
into the natural log of the ratio between response value with CCs
(numerator) and response value without CCs (denominator); that
is, the log response ratio (LRR). This is a common practice to
address the high degree of variance from studies given the spatial
and temporal differences across selected publications (Philibert
et al. 2012). In 11 comparisons of 281 total comparisons, either
the treatment or control variable value was zero, so those compar-
isons were removed before analysis. Previous work has shown that
adding an arbitrary small value to both numerator and denomina-
tor in order to compute an LRR can lead to unrealistic values and
can even change values from negative to positive (Verret et al. 2017;
Weisberger et al. 2019). Also, fewer than 20% of all studies reported
measures of intra-study variance (e.g., standard deviation or stan-
dard error).

To minimize potential for unrealistic values during transforma-
tion, each response variable in a given study was weighted using a
nonparametric method following the formula (n X n)/(n + n),
where 7 is sample size (Lajeunesse 2013). Studies reporting greater
sample size for a given response variable receive a greater weight
than studies with lower sample size. The overall effect of a CC rel-
ative to no CC on each of the three response variables (LRRwg;o0,
LRRwpen, LRRcy) was assessed using random-effect models, with
publication as the random effect and the weights calculated on the
previous step, testing whether the overall mean was different than
zero. Sensitivity analyses and publication bias were both assessed
following statistical procedures from Nichols et al. (2020).
Respectively, these analyses did not indicate the presence of studies
that had a disproportionate effect on response variables of interest,
nor did they indicate the presence of publication-level bias.

Conditional inference trees (CIT) were used as an analytical
approach to explore potential interactions among our dependent
variables. CIT have been increasingly used in agronomic studies
to explore complex interactions among multiple independent var-
iables and identify management effects on productivity and envi-
ronmental quality (Bastos et al. 2021; Jaenisch et al. 2021; Lollato
etal. 2019; Vann et al. 2021). CIT have also been used in the context
of meta-analyses, where they are a particularly good fit when deal-
ing with unbalanced data sets, missing data, and both categorical
and continuous variables (Philibert et al. 2012; Pittelkow et al.
2015). CIT do not rely on parametric statistical assumptions, limit-
ing bias and overfitting issues that are common in other regression
tree approaches, and were specifically developed to identify inter-
actions within complex data sets to facilitate interpretation
(Hothorn et al. 2006; Nembrini 2019). Operationally, CIT use
an algorithm that implements multiple null hypothesis tests
between a chosen response variable (e.g., LRRwpi0, LRRwpENs
LRRcy) and each independent variable (e.g., soil type or CC spe-
cies). It then selects the independent variable with the strongest
association to the response variable, determined by the lowest
P-value, and performs a binary split in the data set at this juncture.
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Figure 1. PRISMA diagram detailing the literature search.

This process is repeated recursively, resulting in a “tree” with
multiple intermediate and terminal nodes (Mourtzinis et al. 2018).

The significance of our overall model of the CC effect on our
three response variables guided the implementation of CIT.
Consequently, a significant effect of CC occurred solely with
respect to weed density (LRRwpgn), and CIT analysis was per-
formed only on this specific response variable. Tree terminal node
means were further compared using a mixed-effect model, with
LRRwpEy as the response variable and terminal node membership
(fixed effect) and publication (random effect) as the explanatory
variables. Based on insights from Vann et al. (2021), and P-values,
20<% of total observations were present at intermediate nodes, and
>5% of total observations were present at terminal nodes to ensure
adequate power (n=139).

CIT identified CC biomass as an important moderator of
LRRywpen; thus we further explored this relationship by regressing
LRRywpeN against CC biomass. A variety of linear and nonlinear
relationships were fit to this relationship, and Akaike and
Bayesian information criteria values were used to determine the
best fit for the selection of a specific model (Miiller et al. 2013).
Finally, all paired values of LRRyyp;0 or LRRwpgn and LRRcy were
categorized as win (CC either decreased weed density/biomass or
increased grain yield) or lose (CC either increased weed density/
biomass or decreased grain yield), creating four quadrants. The
number of observations in each win-lose quadrant was counted
to assess the frequency of the concurrent effects of a CC on weed
suppression and crop yield.

Data wrangling, statistical analysis, and visualization were per-
formed in R software v. 3.6.2 (R Core Team 2021). Random- and
mixed-effect models were run using the Imer function from the
LME4 package (Bates et al. 2015). Fixed-effect models were run
using the Im function from the STATS package. CIT were run using
the ctree function from the PARTYKIT package (Hothorn and Zeileis
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2015; Hothorn et al. 2006). Statistical significance of all model
results was evaluated using alpha = 0.10.

Results and Discussion
Literature Search

After removal of duplicates and application of the filtering criteria
described earlier, 219 abstracts were screened, leading to the selec-
tion of 68 peer-reviewed publications that met our initial selection
criteria. These were read, and 28 papers were identified based on
meeting all criteria, including proper comparisons of treatment
(CC) and control (bare ground) groups, and were used for data
extraction and analysis (Tables 1 and 2). The final studies meeting
all criteria were published between 1985 and 2018. This generated a
total of 281 paired comparisons; 142 comparisons were extracted
from 14 papers for WBIO, and 139 comparisons from 23 papers for
WDEN. While recent studies have looked at CC effects on weeds at
a global scale (Osipitan 2018; Osipitan et al. 2019) and in cotton
production systems specifically (Toler et al. 2019), the results of
our literature search indicated the presence of only four and five
shared publications, respectively. This limited amount of overlap
highlights the novelty of our data set and analyses. All 15 categori-
cal and continuous moderator variables, with associated sample
size, moderator levels, and summary statistics, are presented in
Table 1. All 28 studies and the associated LRRs are presented in
Table 2. Studies represented all states from the USDA-ARS SE
region, except for Louisiana. Given that this meta-analysis is spe-
cific to both region and production practices incorporating CCs,
the number of papers is limited compared with meta-analyses
addressing broader research questions. However, the papers
included in the analysis are representative of the CCs and weeds
prevalent in the region. Studies varied in the number of
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Table 1. List of moderators, levels, associated sample sizes, and summary statistics for categorical and continuous independent variables
across all 28 studies.?

Categorical moderator variable (sample size, N) Level (sample size, n)

CC species (N =241) Austrian winter pea® (n =2)
Cahaba vetch® (n=1)
Cereal rye (n=112)
Cereal rye + Austrian winter pea (n=5)
Cereal rye + cahaba vetch (n=1)
Cereal rye + crimson clover (n=19)
Cereal rye + hairy vetch® (n =5)
Cereal rye + narrow-leaf lupine® (n=1)
Crimson clover (n=35)
Hairy vetch (n = 28)
Italian ryegrass® (n = 3)
Narrow-leaf lupin (n=1)
Oat® (n=3)
Rapeseed® (n=1)
Subterranean clover® (n = 14)
Triticale® (n=1)
Wild radish® (n=1)
Winter wheat® (n=5)
CC termination method (N =238) Herbicide (n = 146)
Herbicide + mowing (n = 12)
Herbicide + roller-crimping (n = 52)
Mowing (n =6)
Roller-crimping (n = 17)
CC type (N=241) Brassica (n=2)
Grass (n=127)
Legume (n=81)
Mix (n=31)
Crop species (N =241) Corn (n=18)
Cotton (n=109)
Peanut (n=5)
Soybean (n=49)

Herbicide use (N =238) Herbicide not used (n = 68)
Herbicide used (n=170)
Location (state) (N =281) Alabama (n=62)
Arkansas (n =27)
Florida (n=4)

Georgia (n=35)
Mississippi (n = 43)
North Carolina (n=92)
South Carolina (n = 12)
Tennessee (n=6)
Soil type (N =217) Clay (n=12)
Fine sand (n=4)
Loamy sand (n=51)
Sandy loam (n=79)
Silt loam (n=58)
Silty clay loam (n=4)
Silty loam (n=9)
Tillage system (N =220) No-till (n = 146)
Strip-till (n=24)
Tillage before CC establishment (n = 50)

Weed community composition (N = 241) Community (> 1 species) (n = 149)
Single species (n=92)

Weed type (241) Summer annual (n = 224)
Summer annual + perennial (n=17)

Continuous moderator variable (sample size, N) Range (median)

CC biomass (N =186) 0-12.9 (3.7)

CC seeding rate (kg ha™) (N =265) 6-178 (80)

Soil OM% (N = 105) 0.4-2.0 (0.6)

Soil pH (N =90) 5.5-6.9 (6.2)

Year of publication (N =241) 1985-2019 (2011)

2Abbreviations: CC, cover crop; OM, organic matter.

bAustrian winter pean (Pisum sativum L.), Cahaba vetch (Vicia sativa L.), hairy vetch (Vicia villosa Roth), narrow leaf lupin (Lupinus angustifolius L.), Italian ryegrass
(Lolium multiflorum Lam.), oat (Avena sativa L.), rapeseed (Brassica napus L.), subterranean clover (Trifolium subterraneum L.), triticale [xTriticosecale Wittm. ex A.
Camus (Secale x Triticum)], wild radish (Raphanus raphanistrum L.), winter wheat (Triticum aestivum L.)
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Table 2. List of publications and associated natural log response ratios (LRR) for
weed biomass (WBIO), weed density (WDEN), and crop yield (CY).

Publication LRRwgio LRRwpeNn LRRcy

Aulakh et al. 2012

Aulakh et al. 2013

Brown and Whitwell 1985
DeVore et al. 2012
DeVore et al. 2013

Hand et al. 2019

Koger et al. 2002 v
Koger et al. 2005 4
Lassiter et al. 2011

Malik et al. 2008

Norsworthy and Frederick 2005 v
Norsworthy et al. 2016
Palhano et al. 2018a
Price et al. 2012

Price et al. 2016b
Reddy 2001

Reddy 2003

Reddy and Koger 2004
Reddy et al. 2003
Smith et al. 2011
Timper et al. 2011
Vann et al. 2018
Webster et al. 2013
Wells et al. 2013

Wells et al. 2016
Wiggins et al. 2017
Yenish et al. 1996
Zotarelli et al. 2009

AT N N N N N N N N N N Y N N N

AN N NN

AN N N N N N N S N NN RN
<

SS SN KNS

comparisons conducted at each site, with most sites associated with
between one and five comparisons used in our analysis (Figure 2).

Overall Effects and the Role of CC Biomass

CCs reduced WDEN (P < 0.0001), but had no significant effect on
WBIO (21% reduction, P = 0.16) (Figure 3). Over all studies, CCs
reduced WDEN by an average of 44% (Figure 3). The results of CIT
for LRRypgn returned five nodes, including three terminal nodes
and two explanatory variables selected (Figure 4). An initial split in
the data set occurred as a function of publication date, where data
were aggregated into comparisons that occurred before and after
2002 (Figure 4). A second split resulted in an intermediate node
that split all comparisons after 2002 based on a CC biomass thresh-
old of 3,300 kg ha™" (Figure 4). LRRypgy Was greatest under study
conditions published before 2002 (0.36, representing a 34%
increase in LRRypgN, node 2); intermediate under study condi-
tions published after 2002 and having less than 3,300 kg ha~!
CC biomass (—0.53, representing a 42% decrease in LRRywpgn,»
node 4); and lowest under study conditions published after 2002
and having more than 3,300 kg ha™! CC biomass (—0.87, represent-
ing a 58% decrease in LRRywpgN, node 5). These results indicate
that for studies conducted after 2002, CC biomass was the funda-
mental moderator associated with decreased WDEN; increased
biomass above a 3,300 kg ha™! threshold was associated with the
greatest suppression on this response variable. The authors believe
that changes could in LRRywpgy could be due to a changing weed
spectrum in the region during this time. Larger-seeded weed spe-
cies became less troublesome during this period, while other
smaller-seeded weed species became more prevalent (Webster
and Nichols 2012). This divergence was around the time of the
development and expansion of glyphosate-resistant weeds
throughout the region (Reddy and Norsworthy 2010). Given that
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smaller-seeded weed species are more responsive to CC biomass,
LRRwpgn may have been reduced as a result.

Our results indicate that CC biomass was the key driver in
reducing WDEN. CC biomass was linearly correlated with
increased suppression of WDEN (decreased LRRwpgy). Results
of regression analysis found that a 50% relative reduction in
WDEN was associated with 6,600 kg ha™' of CC biomass
(Figure 5). Analyses did not indicate the importance of any addi-
tional moderators, suggesting that the relative suppressive effect of
CCs on WDEN is present across a wide range of edaphic condi-
tions (e.g., soil texture and pH) and management choices (e.g.,
CCs and cash crop species selection, tillage system, and herbicide
use). Both recent meta-analyses and experimental work have come
to similar conclusions, particularly with respect to the effect of CC
biomass (Baraibar et al. 2018; MacLaren et al. 2019; Nichols et al.
2020; Osipitan 2018; Osipitan et al. 2019). Nichols et al. (2020),
who conducted an analogous meta-analysis of CC effects on weeds
in the U.S. Midwest, also found that the relative effect of CC bio-
mass was an important moderator of weed suppression, and this
suppressive effect was unaffected by varied geographic environ-
ments, tillage and crop planting decisions, and herbicide use.

However, the results of Nichols et al. (2020) differed from ours
in two important ways. First, within the Midwest context, CCs
exhibited a suppressive effect on WBIO and not WDEN.
Furthermore, CC type (grass, legume, forb) was an important
moderator of this effect. That work found that grass CC (predomi-
nantly cereal rye [Secale cereale L.]) was associated with a signifi-
cant mean WBIO reduction of 68%, while the 33% reduction
associated with other CC types was not significant. In that study,
the quantity of CC biomass associated with a 75% reduction of
WBIO was 5,000 kg ha™!. Conversely, our results only demonstrate
a suppressive effect of CC biomass on WDEN; and neither CC spe-
cies nor type were significant moderators. While the response var-
iables were different across meta-analyses, these contrasting
findings point to the importance of factors, such as heat-unit accu-
mulation, that regulate CC biomass accumulation and CC persist-
ence. Both field studies and modeling work have substantiated the
effect of heat-unit accumulation on CC biomass and its potential
impact on weeds (Baraibar et al. 2018; Nichols et al. 2020). To fur-
ther quantify these regional differences, the maximum values for
CC biomass in our study exceeded those recorded in Nichols
et al. (2020) by approximately 3,500 kg ha™', highlighting the
favorable climatic conditions of the Southeast to generate substan-
tial biomass irrespective of CC type or species. However, not all
biomass is created equal when it comes to weed suppression.
Environmental factors not only affect CC biomass accumulation
but also affect CC decomposition rates, which affects season-long
weed suppression by the CC during the cropping season (Thapa
et al. 2022). This could explain the ability of the CC to suppress
weed density but allow for increased weed biomass due to greater
heat units and rainfall in the cropping season.

The key determinants in generating sufficient CC biomass to sup-
press weeds are planting and termination dates; these two “windows”
determine the cumulative amount of heat units to which a CC is
exposed (Nichols et al. 2020; Price et al. 2016b). A study conducted
across sites in Alabama and Florida examining the effects of four
planting and four termination dates found that CC biomass values
for cereal rye and crimson clover (Trifolium incarnatum L.), unsur-
prisingly, were greatest at the earliest planting date and latest termi-
nation date (i.e., the largest possible growth window). Conversely, CC
biomass values for cereal rye and crimson clover were reduced by fac-
tors of eight and ten, respectively, when planting was latest and
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Figure 2. Map of study locations used in the meta-analysis. Triangles are colored according to the number of paired comparisons from each location.
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Figure 3. Overall mean effect of cover crop (CC) on weed biomass, weed density, and crop yield. The blue dotted line, purple bar, and green solid line represent the mean
response, 95% confidence interval, and no response, respectively. Statistical difference (mean response is significantly different than zero) was assessed with a =0.10.

termination earliest (i.e., the smallest possible growth window) (Price
et al. 2016b). While heat-unit accumulation is clearly the determinant
in generating adequate CC biomass, this can be highly constrained by
cash crop production practices requiring termination based on timing
of cash crop planting, which may restrict CC biomass accumulation.
This often entails the use of crop varieties that optimize the use of heat
units and solar radiation. Practically speaking, this means that plant-
ing dates have become earlier and harvest dates later over time, which
has become increasingly possible because of climate change
(Cammarano and Tian 2018; Knox et al. 2014).
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Due to these agronomic and economic realities, research has
increasingly explored ways to establish CCs earlier and terminate
them later without requiring wholesale changes in the adoption of
shorter-season cash crop varieties. Establishment methods have
made use of aerial CC seeding via planes and helicopters, as well
as ground-driven equipment such as “highboy” applicators that do
not damage the growing crop (Bergtold et al. 2019). However, these
methods require higher CC seeding rates, due to greater seed and
seedling losses (Bergtold et al. 2019). Additionally, the use of drill
interseeding has been explored to combine earlier seeding (during
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Figure 4. Conditional inference tree for weed density log response ratio (LRRwpen). Mean response for box and whisker plot followed by the same letter are not significantly
different (o= 0.10). pub_year is the publication year; cc_bio_kgha is the cover crop biomass in kg ha™.
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Figure 5. Weed density log response ratio (LRRwpen) as a function of cover crop (CC) biomass (kg ha™). Points are colored based on conditional inference tree (CIT) threshold:
green values are those represented in the <3,300 kg ha~! terminal node; yellow values are those represented in the >3,300 kg ha™! terminal node. The white dotted line represents
a 50% reduction in LRRypey at an associated CC biomass value of 6,600 kg ha™t.

cash crop vegetative development) and the benefits of a drill, to be highly contingent on in-season weather patterns (Moore
namely good seed-soil contact (Curran et al. 2018). Findings on  and Mirsky 2020; Stanton and Haramoto 2021). Drill interseeding
CC biomass via drill interseeding have been mixed and appear  also requires specialized equipment and may impact in-season
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Figure 6. Crop yield and weed response log response ratio (LRR) plotted against each other. The distribution of LRR for crop yield and weeds is presented to the right of and
above the graph. Circles and distribution curves correspond to weed biomass (orange) and weed density (blue) values, respectively. W-W, L-W, W-L, and L-L are win/lose quadrants
where the first letter represents weed biomass/density (win if negative LRR, lose if positive LRR) and the second letter represents yield (win if positive LRR, lose if negative LRR).
Comparisons where cover crop suppressed weed and improved yield (W-W) comprised 38% of all points.

herbicide management (Curran et al. 2018; Stanton and Haramoto
2021). Later termination of CCs has also been researched, and one
method in particular, “planting green,” has been receiving increas-
ing research attention following from farmer experimentation
(Grint et al. 2022; Quinn et al. 2021; Reed et al. 2019). Planting
green entails planting a cash crop into a living CC and terminating
the CC at the time of planting or shortly after to optimize the ben-
efits of the CC (Reed and Karsten 2022). Research in Kentucky
demonstrated that postplant CC termination of cereal rye, associ-
ated with a 21-d difference from standard CC termination practi-
ces, resulted in approximately twice as much CC biomass (Quinn
etal. 2021). The relative merits and trade-offs of these warrant fur-
ther investigation, particularly within the Southeast states upon
which our analyses are based.

While greater CC biomass at planting is more effective at sup-
pressing the germination and emergence of weed seedlings, par-
ticularly during the earlier part of the growing season, the
ability of CC biomass to suppress the growth and development
of WBIO in the Southeast may be constrained by the very same
factors that make it successful in reducing WDEN. For example,
faster accumulation of heat units and high relative humidity levels
like those of the Southeast are equated with expedited rates of CC
biomass decomposition, as well as weed growth and development
(Reinhardt Piskackova et al. 2021; Thapa et al. 2022). Simply put,
decreased CC biomass covering the soil over the course of the sea-
son coupled with a favorable environment for WBIO accumulation
suggests a successful trajectory for any weeds that evade chemical
or physical control. This is compounded by the fact that many of
the most prevalent weed species in agronomic cropping systems of
the Southeast are those that possess a C, photosynthetic pathway,
which provides them a relative advantage over most crops in the
region. Salient examples include annual and perennial grasses such
as broadleaf signalgrass [Urochloa platyphylla (Munro ex C.
Wright) RD. Webster] and johnsongrass [Sorghum halepense
(L) Pers.], in addition to the broadleaf Palmer amaranth
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(Amaranthus palmeri S. Watson), as well as nutsedge species
(Cyperus spp.) (Rojas-Sandoval 2015; Sage 2017; Travlos et al.
2019; Wallace et al. 2013; Ward et al. 2013).

Given this fact, finding ways of reducing WDEN levels even fur-
ther and dealing with escapes is paramount. Coupling CC use with
herbicide best management practices is an essential part of this equa-
tion; particularly the use of overlapping residual chemistries, rotation
of diverse herbicide sites of action, and the use of postemergence direct
application (Norsworthy et al. 2012). However, despite a reduction in
WDEN by approximately 50% relative to bare ground, we did not find
evidence of a strong moderating effect of herbicide. Specifically, her-
bicide use did not surface as a node in our CIT analysis, suggesting
that the suppressive effect of CCs on WDEN was the same across both
herbicide-treated and untreated comparisons. Consequently, addi-
tional work will be necessary to optimize CC-herbicide interactions.
While the study of CC-herbicide interactions is not new (Teasdale
1996), more recent work has elucidated the mechanisms behind
how CCs and herbicides may synergistically limit weed seed germi-
nation and seedling survival (Bunchek et al. 2020; Wallace et al. 2019).

Additionally, studies within the Southeast have shown that few
residual herbicides negatively impact the postharvest growth and
establishment of CCs in the fall, suggesting that CC integration as
an IWM tactic is not impeded by the current spectrum of active
ingredients (Palhano et al. 2018b; Rector et al. 2020). Further inte-
gration of novel management practices may augment CC-herbi-
cide synergies. One recent example involves the idea of “weed
priming” (Oliveira et al. 2020). Authors from that study hypoth-
esized that the use of plant hormones could either synchronize
weed seed germination patterns or induce higher levels of dor-
mancy. In either case, coupled with preemergence herbicide and
CC use, this could be a highly effective practice to both increase
the efficacy of preemergence herbicides and potentially limit selec-
tion pressure by minimizing the heavy reliance on postemergence
herbicides. Empirical work is needed to substantiate these hypoth-
eses, but this presents a creative approach to CC-based IWM.
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Crop yield comparisons were pooled over our WBIO and WDEN
comparisons, resulting in 144 comparisons across 22 publications.
Our results indicated that LRRcy was not significantly different
from zero (8% increase, P =0.88) (Figure 3). While CC-driven
gains in soil conservation and moisture retention have been seen
across varied sites within the Southeast, improvements to these
properties may only improve crop yields in growing seasons when
precipitation amounts may be limited or with the inclusion of a
legume CC (Farmaha et al. 2022). LRR values for crop yield and
both weed responses were graphed together to quantify the num-
ber of comparisons where both crop yield responses were above
zero and weed responses were below zero, leading to the charac-
terization of “win” and “lose” scenarios (Figure 6). The best pos-
sible outcome for increased yield and reduced weeds (win-win,
or W-W) occurred across 38% of comparisons. These data also
indicate that while 70% of all weed response comparisons were less
than zero, only 47% of yield comparisons were above zero
(Figure 5). This may be an artifact of the studies included in our
analyses, as most were designed to evaluate the suppressive effect
of CCs on weeds, but it may also suggest trade-offs around opti-
mizing crop yield under CCs. Additionally, because crop yield
response from comparisons was taken from broad temporal, geo-
graphic and management gradients, this may mask benefits
accrued during years of precipitation deficit or nitrogen limitation.

Given the challenges of weed management in the Southeast
region, CCs have an important role to play in IWM systems.
While our results strongly highlight the role of CC biomass in
reducing WDEN, we recognize the challenge of achieving certain
thresholds given current agronomic and economic objectives and
concerns stemming from farmers themselves. Increased interest
and study around CC establishment and termination options show
promise for balancing crop production and weed-suppression
goals. This interest and excitement appear consistent across indus-
try, farmer, and university stakeholders, suggesting that balancing
multiple objectives in CC-based systems is a high priority that is
drawing on a diversity of experience and knowledge. However,
we end by cautioning that without proper support in the form
of education and policy to both increase adoption and ensure best
management practices, these collaborations and shared efforts will
be impeded.
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