

Evolution of Conservation Agriculture

Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, Ohio

Evolution of Agriculture

10 to 12 Millennia B.P.

Planting stick to cover the seed

The "ard" was a paddle-shaped digging tool.

6 to 8 Millennia B.P.

Hand tools to create a loose soil laver and eradicate weeds

6 to 8 Millennia B.P.

Triptolemos Ard (named after Greek god and hero)

Sinclair and Sinclair (2010)

BABYLONIAN ARD WITH ATTACHMENT FOR DRILLING GRAIN 3300 YEARS AGO

The human or animal-pulled implements to cover large areas, also used in the Indo-Gangetic Plains as cited in the epic "Ramayana."

MOHENJODARO/HARAPPA IN INDUS VALLEY 3200 BC-1900 BC

British Museum

Carbon Management and Sequestration Center

Iron plow share

5th to 10th Century A.D.

Sinclair and Sinclair (2010)

Roman Plow

The "Ard" evolved into the well-known "Roman plow." Vergil gave the earliest description: "while still growing in the woods, an elm is bent with great strength and subdued so as to form the plow-beam, and is made to assume the shape of the curved plow. To this plow beam a pole stretching out 8 feet, two moldboards, and share beam with two ridges are fitted at the base."

Horse-drawn implements (the Roman plow evolved into a rough inverting plow in the latter part of the 18th century).

Jethro Tull (1674-1741)

He believed, imaginatively but erroneously, that an objective of plowing was to pulverize the soil grains into small particles so that they can be ingested by plant roots.

Thomas Jefferson

A moldboard plow used in the U.S. was designed by Thomas Jefferson in 1784, and patented by Charles Newfold in 1796.

This plow was marketed in the 1830s as a cast iron plow by a blacksmith named "John Deere."

Carbon Management and Sequestration Center

USDA Logo

The Prairie Breaker

These new tools helped farmers in the U.S. plow their way to the west. The basic equipment for the prairie breaker was the plow.

Carbon Management and Sequestration Center

The Steam Horse

1910 A.D.

Expansion of Global Cropland Area

The cropland area expanded dramatically.

Year	Cropland Area (Mha)
1700	265
1800	573
1920	913
1950	1170
1980	1500
2000	1380

THE OHIO STATE UNIVERSITY

Source: Lal (2014)

A Dust Storm in West Texas in 1934

Most soils have lost 25 to 75% of their original soil carbon pool!

THE OHIO STATE UNIVERSITY

DEGRADED LAND (BAI et al., 2008)

Category	Quantity
Degrading Area	3.5 Bha
Territory	23.54 (%)

GLOBAL SOIL DEGRADATION (10⁹ha)

•	Water Erosion	: 1.09	Oldeman,	1994)
---	---------------	--------	----------	-------

- Wind Erosion : 0.55 (Oldeman, 1994)
- Salinization : 0.85 (FAO, 2005)

THE OHIO STATE UNIVERSITY

Historical Basis of No-Till Farming

- 1. Land is so disfigured...once it has been u
- 2. Principal objective of plowing is weed cor
- 3. Vanishing lands.....
- 4. Plowman's Folly.....
- 5. The substitution of chemical.....
- 6. "Mankind marches across the earth leavi

(1979)

7. Manejo Ecologico do Solo Prof. Dr. Ana Maria Primavesi

NO-TILL FARMING AS AN EMERGING GLOBAL TECHNOLOGY

Boots with no residue.

Boots with residue.

Corn with no residue.

Corn with 100% residue

1940s and 1950s - The Herbicides as Alternative to Plowing

- Invention of 2, 4-D after World War II
- 1950s and 1960s: Atrazine, Simazine, Cyanazine
- 1960s: Paraquat by ICI
- 1990s: Roundup ready crops

Thus, plowing became dispensable

GLOBAL UPTAKE OF CA IN M ha OF ARABLE CROPLAND

Kassam et al. (2015)

CROPLAND UNDER CA

Continent	Cropland under CA (MA ha)	Global CA area (%)	Cropland (%)
South America	66.4	42.3	60.0
North America	54.0	34.4	24.0
Australia & NZ	17.9	11.4	35.9
Asia	10.3	6.6	3.0
Russia & Ukraine	5.2	3.3	3.3
Europe	2.0	1.3	2.8
Africa	1.2	0.8	0.9
Global Total	157.0	100.00	10.9

CA ADOPTION IN THE COUNTRIES OF NORTH AMERICA IN THE 2008/09 AND 2013 UPDATES

Country	Mha (2008/09)	Mha (2013)
USA	26.5	35.6
Canada	13.5	18.3
Mexico	0.02	0.04
Total	40.0	54.0
% Increase		40

CA ADOPTION IN THE COUNTRIES OF SOUTH AMERICA IN THE 2008/09 AND 2013 UPDATES

Country	CA area Mha 2008/09 update	CA area Mha 2013 update
Brazil	25.5	31.8
Argentina	19.7	29.2
Paraguay	2.4	3.0
Uruguay	6.6	1.1
Bolivia	0.7	0.7
Venezuela	0.3	0.3
Chile	0.2	0.2
Colombia	0.1	0.1
Total	19.564	66.4
% change		33

Brazilian No-till Pioneer Herbert Bartz

Adopted no-till in 1972

Evolution of No-till Farming in Brazil

Year	Institution
1971	IPEAME/EMBRAPA
1972	Herbert Bartz, the first no-till farmer in Brazil
1975-1976	The first no-till planter built in Brazil
1981	The first NT conference, Ponta Grossa, Parena

THE OHIO STATE UNIVERSITY

AREA UNDER CONSERVATION AGRICULTURE IN BRAZIL

41

Evolution of ZT/CA management systems in Brazil

Source: Freitas and Landers (2014)

AGROECOSYSTEM

Management of energy transformation and biochemical cycles of specific plant and animal communities within a landscape to generate ecosystem services such as food, feed, fiber and fuel.

CARBON COST OF PLOWING

TILLAGE	kg C E/ha
Moldboard plowing	15.2
Chiseling	7.9
Heavy Disking	8.3
Standard Disking	5.8
Sub-soiling	11.3
Cultivation	4.0
Rotary hoeing	2.0

CARBON COST OF FERTILIZERS & PESTICIDES (LAL, 2004)

	Equivalent Carbon Emission
Input	(Kg C Kg⁻¹)
(i) Nitrogen fertilizer	0.9 - 1.8
(ii) Phosphorous	0.1 - 0.3
(iii) Potassium	0.1 - 0.2
(iv) Herbicides	1.7 - 12.6
(v) Insecticides	1.2 - 8.1
(vi) Fungicides	1.2 - 8.0

CARBON COST OF HERBICIDES (LAL, 2004)

HERBICIDE	kg C E/kg a:i
Atrazine	3.8
Dicamba	5.9
Glyphosate	9.1
Paraquat	9.2

The Ohio State University

Source: Lal (1985)

THE OHIO STATE UNIVERSITY

THE OHIO STATE UNIVERSITY

Carbon Management and Sequestration Center

RATE OF CARBON SEQUESTRATION

GLOBAL POTENTIAL OF SOC SEQUESTRATION (Pg C/YR)

Cropland: 0.4-1.2

Grazing land: 0.3-0.5

Salt-affected 0.3-0.7 soils:

Desertified soils: 0.2-0.7

Total: 1.2-3.1

Lal (2010)

SOIL STEWARDSHIP

Soil stewardship and care must be embedded in every fruit and vegetable eaten, in each grain ground into the bread consumed, in every cup of water used, in every breath of air inhaled, and in every scenic landscape cherished.