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A B S T R A C T   

Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse 
gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for 
addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based 
agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly 
variable hydrologic conditions. 

Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice- 
wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations 
were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations 
across three representative soil hydrologic categories (i.e., dry, median, and wet). 

Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, 
and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an 
increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a − 0.2, 1.8, or 3.1 Mg CO2- 
e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2- 
e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed 
that the production environment has a controlling effect on methane and, therefore, net GHG balance. For 
example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were 
returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our 
results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to 
incentivize the adoption of regenerative ‘no burn’ residue management practices.   

1. Introduction 

Sustainable development in regions such as Eastern India that have 
lagged behind during the productivity advances of the Green Revolution 
era, must pursue approaches that meet both food production and envi
ronmental goals in order to avoid or minimize the ecosystem disservices 
that have undermined sustainability elsewhere in the region (TCI, 

2022). Challenges are already emerging, with recent evidence showing 
that the practice of rice residue burning is not limited to the intensified 
‘breadbasket’ region of Northwestern India, but is also on the rise in 
Eastern India (Urban Cordeiro et al., 2023). Residue burning, particu
larly in the previously identified burning hotspots in the Northwest, has 
been widely studied because of its impacts on public health that are 
associated with small particulate (i.e., PM2.5) air pollution (Liu et al., 
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2018a; Montes et al., 2022; Mor et al., 2022). 
In areas where burning is an emerging or established practice, bur

geoning carbon offset markets have been proposed as an opportunity to 
shift the perception of rice straw from a waste product to a valued 
resource (Gorain et al., 2021). Many current carbon market protocols for 
GHG mitigation are driven primarily by strategies for increasing soil 
organic carbon (SOC) stocks. Recycling crop residues to soils directly 
through incorporation or indirectly through livestock manures likely 
offers the most viable near-term pathway for increasing SOC in areas 
where burning is practiced. Nevertheless, from a public policy and 
ecosystems services perspective, the aim in climate-change mitigation is 
to reduce net GHG emissions and not to solely build SOC per se. Since 
emissions pathways in rice-based and crop-livestock systems are com
plex and contingent on the aggregate of methane and nitrous oxide, 
outcomes from different practice changes are difficult to predict, espe
cially in the context of diverse smallholder systems like those that are 
common in Eastern India. Methane emissions are the primary GHG of 
concern in many rice systems, given that flooded conditions promote an 
anaerobic environment where methanogenic microorganisms are 
favored (Krüger et al., 2001). From a GHG perspective, some studies 
suggest that in wet systems, where nitrous oxide is not a major 
contributor to GHGs (Kritee et al., 2018), methane emissions in 
rice-based systems can outweigh the benefits from carbon sequestration 
achieved through building SOC with crop residue recycling (Liu et al., 
2014). While in situ management of rice residues improve soil properties 
from an agronomic perspective (Bünemann et al., 2018; Mehmood et al., 
2020; Powlson et al., 2011), the net GHG implications of changes in soil 
carbon management are context-dependent and must be studied from a 
systems perspective to avoid unintended consequences (Lugato et al., 
2018). 

No-burn policies that are both responsive to an evolving crop- 
livestock system (e.g., decreasing herd sizes and dairy commercializa
tion) and create value around straw (e.g., carbon markets) are most 
likely to reduce the expansion of burning in Eastern India (Urban Cor
deiro et al., 2024 (under review)). Yet, the net GHG implications from 
different residue allocation strategies needs to be more fully understood, 
particularly considering the complex and varied hydrological conditions 
that typify rice production systems in the region. Alternative pathways 
beyond the farm-level exist, including residue use as livestock fodder 
and biochar creation and return. In Eastern India, rice residues are most 
commonly used as livestock fodder. Feeding low-quality (i.e., poor di
gestibility) rice residues is associated with high rates of enteric 
fermentation (Sirohi and Michaelowa, 2007), a GHG source that ac
counts for 91% of total methane emissions from livestock in India 
(Chhabra et al., 2013). Furthermore, some estimates suggest that GHG 
emissions from livestock products as a whole surpass those from crop 
production in India (Vetter et al., 2017). The fate of carbon in the 
landscape and resulting GHG fluxes has not been previously studied in 
Eastern India. Given the importance of agri-food systems and rice pro
duction to overall GHG emissions in India (Crippa et al., 2021; Sapkota 
et al., 2019; Vetter et al., 2017) and the urgent public health priority of 
limiting agricultural burning, quantifying the relative GHG implications 
of different residue management strategies provides essential informa
tion for developing robust mitigation options, carbon markets, policy, 
and field-level decision making. 

This research provides a model-based assessment of four different 
residue management strategies in Eastern India, including burning, in 
situ incorporation, livestock fodder with manure returns, and biochar. It 
has two primary objectives: (1) to characterize the influence of field 
hydrology on GHG fluxes in the context of different rice residue man
agement strategies, and (2) to compare net GHG fluxes at the farm-scale 
from four residue pathways. We hypothesized that wetter production 
environments would result in greater overall soil-derived emissions 
compared to drier environments. This increase in emissions was ex
pected to be primarily driven by methane emissions, and we anticipated 
that the ranking of the four residue pathways would differ based on the 

hydrologic characteristics. Specifically, we hypothesized that in drier 
environments, the biochar and incorporation pathways would yield the 
lowest net GHG fluxes. In wetter environments, we hypothesized that 
the biochar and burning pathways would result in the lowest net GHG 
fluxes. 

Direct GHG emissions were calculated through Tier 1, 2, and 3 
estimation approaches. Our Tier 3 modelling method for soil-based GHG 
emissions at the field scale uses daily field water measurements across 
three rice seasons to establish a range of realistic hydrologic boundary 
conditions to constrain a process-based model (DNDC). As a comple
ment to the dynamic approach used for soil-related emissions, we uti
lized IPCC Tier 1 and 2 accounting methods to quantify the direct, non- 
soil GHG emissions from residue burning, biochar production, and 
bovine livestock feeding. This approach endeavors to expand our un
derstanding of the GHG implications of different rice residue manage
ment practices in Eastern India to support the identification and 
targeting of solutions that address multiple sustainable development 
goals. 

2. Methods 

2.1. Study area 

The study is situated in Bihar State in Eastern India. With a mostly 
rural population of more than 100 million, Bihar’s agriculture is char
acterized by mixed crop-livestock systems and the prevalence of the rice- 
wheat annual cropping rotation (Erenstein and Thorpe, 2010). West 
Champaran District (27.08◦N, 84.35◦E) in the northwest corner of Bihar, 
where the majority of the study’s data originates, is characterized by 
sandy loam and clay loam alluvial soils, with approximately 77% of 
farming households cultivating rice-wheat (Ahmad et al., ). The climate 
of Bihar is dominated by the southwest monsoon that concentrates 
85–90% of state’s annual average rainfall of 1130 mm (long-term range 
630 to 1740 mm in central Bihar) within a four-month period from 
June–September (Balwinder-Singh et al., 2019). Water is generally 
abundant during the monsoon season with recurrent flooding of most 
agricultural fields, but there are large differences in field water condi
tions between years and across drainage gradients (see Fig. 2). Nearly all 
rice fields receive supplemental irrigation, but water limitations have 
been identified as a principal yield constraint to productivity (Balwin
der-Singh et al., 2019; McDonald et al., 2023). Rather than differences in 
irrigation practices, local to regional-scale drainage patterns and soil 
factors principally govern field hydrology, which uniquely characterizes 
Bihar in comparison to other northwestern states of the Indo-Gangetic 
Plain (Singh and Pandey, 2014). Fields within close spatial proximity 
often have highly varying hydrologic behaviors, ranging from mostly 
non-flooded to nearly fully flooded over the entire growing season, with 
many variations in between. 

2.2. Rice residue management strategies and methods for GHG estimation 

At the farm scale, four pathways for rice residue management are 
explored in this study, including burning, in situ incorporation, livestock 
fodder with partial manure return, and biochar (Fig. 1). Details for each 
of these approaches are provided below. For each pathway, a process- 
based model (DNDC) was used to quantify soil-based GHG fluxes, with 
IPCC Tier 1 and 2 accounting methods used to quantify the direct, non- 
soil GHG emissions of the four residue management strategies. A life 
cycle assessment (LCA) approach was used, with a limited focus on GHG 
emissions. By identifying a unit of analysis (i.e., yield from 1 ha of land), 
drawing boundaries around the process (i.e., farm-level fate of rice 
residues), and using database inventories to assign values to each impact 
category (i.e., atmospheric radiative forcing) for each activity in the 
process, and interpreting the results for its intended audience, an LCA is 
a valuable ‘decision-support tool’ that translates systems complexity to 
actionable insights (Horne et al., 2009; ISO, 2006). 
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2.3. The DNDC model: calculating soil-derived GHG emissions with 
observed hydrologic variability 

The DNDC model is a process-based biogeochemical model devel
oped at the University of New Hampshire (University of New Hamp
shire, 2012). The model is run on a daily time-step using climate, soil, 
and plant input characteristics to simulate a range of processes including 
plant growth, soil organic matter dynamics, nitrification, denitrification, 
and methanogenesis (Li, 2000). We used DNDC v.9.5 to simulate 
methane (CH4) and nitrous oxide (N2O) fluxes and soil organic carbon 
(SOC) over a 100-year period in the rice-wheat rotation for three distinct 

hydrology categories, namely dry, median, and wet, to provide a range 
of expected GHG outcomes for each rice residue strategy. Long-term 
adoption (i.e., 100 years) is required for sequestration permanence, 
and net GHG balance can shift over time, even from a sink to a source 
(Lugato et al., 2018). DNDC has been used in other studies to simulate 
biogeochemical processes and GHG fluxes in rice-based systems (Are
nas-Calle et al., 2022; Babu et al., 2006; Zhu et al., 2019) and also to 
characterize nutrient cycling in the rice-wheat systems of India (Pathak 
et al., 2006). Wang et al. (2020) reported a correlation (R) between the 
observed and simulated CH4 of 0.90 (p < 0.01). Pathak et al. (2005) 
reported a deviation (%) of 3.6 and 6.8 between observed and simulated 

Fig. 1. Diagram depicting the four residue fates in this study. All equations are provided in the Methods section of this study.  

Fig. 2. Representative daily field water observations from comparatively dry, median, and wet conditions across three years. These data are used as inputs to DNDC 
to accurately capture the hydrologic variability that characterizes rice production systems in Eastern India. 
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CH4 and N2O fluxes, respectively. Arenas-Calle et al. (2022) DNDC 
model validation results found that simulated and observed net GHG 
flux had an R2 of 0.9. Nitrous oxide was underestimated with an R2 of 
less than 0.1, but only contributed to a small portion of the overall net 
GHG flux (Arenas-Calle et al., 2022). Babu et al. (2006) validated the 
DNDC model for emissions in rice and found, across 11 India-based sites, 
that the percent relative deviation between simulated and observed 
values ranged from − 12.3 to 56.4 for CH4 (r2 = 0.99) and − 247.8 to 28.6 
for N2O (r2 = 0.93). Zhu et al. (2019) stated a correlation coefficient (r) 
of 0.84 between simulated and observed SOC values with a root mean 
square Error (RMSE) of 2.75 g kg− 1. 

Typically, biogeochemical models for rice systems rely on fixed as
sumptions for field water conditions (e.g., ‘flooded’ or ‘alternate wetting 
and drying’) or, alternatively, use one-dimensional simulation ap
proaches. Neither approach is appropriate for rice production environ
ments like those in Bihar where local to regional drainage patterns and 
heavy monsoon rainfall exert a strong influence on the field water bal
ance and, in general, supersede the influence of farm management. To 
account for the range of hydrological differences that characterize rice 
systems in Bihar, we constrained the DNDC model with observed daily 
water level data during the rice season (Julian day 183–302) using the 
‘water table’ mode in the DNDC model. 

Three years (2020, 2021, 2022) of measured rice field water data 
during the rice growing season were used to create three representative 
hydrology categories based on the ‘wetness’ distribution of production 
fields within each year. Year 1 field water observations (2020, average 
rainy season, n = 35) were taken from West Champaran District. Year 2 
observations (2021, above average rainy season, n = 47) were also taken 
from West Champaran District. Year 3 observations (2022, below 
average rainy season, n = 183) were taken from nineteen districts 
distributed across Bihar. Both Year 1 and Year 2 water data were 
accompanied by comprehensive soil and crop management data. 

To collect these data, field water tubes of 10 cm diameter by 30 cm 
length with perforation holes (5 mm diameter, 2 cm apart) were inserted 
vertically, 15 cm below the soil surface. Daily water level measurements 
(− 15 to 15 cm) were recorded beginning with rice transplanting and 
finishing at harvest. Positive values indicate depth of flooding above the 
soil surface and negative values indicate the depth at which the soil was 
saturated below the soil surface. Because these data were collected for 
other research purposes, the three years are not collected from the same 
field sites. Nevertheless, the range of water regimes characterized within 
each year (i.e., fully flooded to consistently drained with most fields in- 
between these extremes) suggests that the data adequately capture the 
range of field hydrologic possibilities that are representative of the 
variability within the region as a function of different climate years. 

To define a representative range of field hydrology conditions to use 
as input data for the DNDC simulations, individual production fields 
from each set of annual field water observations were characterized by 
the number of flooded days versus non-flooded days. The site with the 
median value was then selected to represent the ‘median’ hydrology 
category for that year. The ‘dry’ and ‘wet’ representative sites were 
randomly selected from all sites one standard deviation away from the 
mean in both directions, resulting in nine distinct hydrologic regimes (i. 
e., 3 categories x 3 years) that were used as inputs for DNDC simulations. 
Thereafter, 100-year DNDC water level input files were constructed for 
each hydrologic category (i.e., dry, median, wet) by randomly selecting 
a climate year (i.e., 2020, 2021, 2022 – with equal probabilities of se
lection) to use as the field hydrology for a given simulation year. For the 
wheat season in all simulations, water level input files were set to − 100 
cm and to 0 cm on Julian days 22, 340, and 352 to correspond to typical 
farmer irrigation practices. The potential influence of climate change 
and irrigation practice changes on field hydrology are unknown, hence 
were not considered in our simulations. 

Data inputs required for DNDC included climate, soil, management, 
and crop data. Given that only 2020 and 2021 hydrology data included 
crop management and soil data, these associated parameters from the 

six hydrologic sites (three from 2020 and three from 2021) were aver
aged to create a ‘synthetic site’ for the DNDC runs. Daily climate data 
were obtained from the NASA Langley Research Center (LaRC) POWER 
Project, and included maximum and minimum temperature (◦C), wind 
speed at 2 m (m s− 1), and humidity (%). Daily temperature data corre
sponding to each representative field (i.e., for each hydrologic category 
x year) were used as a model input. Precipitation was set to zero during 
the rice season, as water availability was controlled by the water level 
files. 

The DNDC crop model was calibrated through adjustment of the 
following parameters: maximum biomass (kg C ha− 1) (grain, leaves and 
stems, and roots), biomass fraction (fraction of grain, leaves and stems, 
and roots), biomass C:N ratio (grain, leaves and stems, and roots), total 
N demand (kg N ha− 1), thermal degree days (TDD ◦C) (cumulative 
temperature from seeding to maturity), water demand (g water per g dry 
matter), and N fixation index (default value of 1 for non-legume crops) 
(Partridge et al., 2011). Initially, wheat optimum temperature, wheat 
biomass fractions and C:N ratios of grain, leaves and stems, and roots 
were taken from Wang et al. (2023). For rice, biomass fractions were 
taken from Kar et al. (2021) and optimum temperature from Dhanushka 
(2011). The crop model parameters where then manually calibrated 
following the protocol of Partridge et al. (2011). 

The manual calibration process began with adjustment of the 
maximum biomass parameter by adjusting the grain biomass C ac
cording to observed maximum grain yields. The maximum observed rice 
and wheat yields of the most common varieties were taken from 2021 
crop management data (n = 210, West Champaran District). The 
maximum observed value for the most common rice variety, Sarju52, 
was 5 Mg ha− 1 (mean: 3.77 Mg ha− 1). The maximum observed value for 
the most common wheat variety, UP262, was 4.87 Mg ha− 1 (mean: 3.39 
Mg ha− 1). The biomass C parameters of leaves, stems, and roots were 
based on grain biomass C and associated biomass fractions. Final 
biomass C parameters used in the study are available in Table S1. To 
begin the calibration process, non-limiting irrigation and N fertilization 
rates were provided. Simulated and observed yields were compared in 
year 3 of the simulations. From preliminary simulations, yield levels 
stabilized around year 3. Rather than conducting a spin-up process that 
would require a series of state variables that were not available for 
Eastern India, we used the initial year (i.e., year 3) where yields reached 
a stable state. 

The grain biomass C parameter was increased incrementally until the 
simulated yields and observed maximum grain yields were within 10% 
of one another. Next, the seasonal accumulative thermal degree days 
(TDD) were incrementally adjusted from the starting value so that the 
simulated crop maturity date matched the harvest date. For example, 
initially, the crop maturity date was earlier than the harvest date, so the 
TDD value was incrementally increased. This approach ensured that the 
crop model parameters enabled the highest observed yields for the re
gion from our data. The long-term DNDC simulations were conducted 
assuming that average ‘current’ yield levels were maintained, hence 
fertilizer was reduced until the output grain biomass C was within 10% 
of the rice and wheat observed mean grain yields. 

Measured field data were used for initial soil parameters: SOC (0–10 
cm): 5.2 g C kg− 1 soil; pH: 8.12; bulk density: 1.46 Mg m− 3; soil texture: 
sandy clay; and the clay fraction: 0.42 (see Table S1). Crop management 
parameters were also based on measured field data: planting dates: June 
9 (rice nursery) and November 23 (wheat); harvesting dates: October 29 
(rice) and April 10 (wheat); and tillage (two passes before crop estab
lishment with 20 cm and 10 cm soil disturbance for rice and wheat, 
respectively). 

2.4. Calculating non-soil derived, direct GHG emissions 

Direct GHG emissions that were non-soil derived were estimated via 
a series of Tier 1 and Tier 2 approaches. For these estimates, the biomass 
of rice straw residue was estimated using Eq. (1). 
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Yrs =Y ∗ R (1)  

Where. 

Yrs = rice straw (t ha− 1, fresh) 
Y = rice grain yield (t ha− 1) 
R = crop production to straw ratio 

For all rice residue management strategies, the amount of straw 
produced was estimated using current rice yields (3.77 t ha− 1) and held 
constant throughout all simulation years. R was taken as 1.5 (Jain et al., 
2014). 

2.4.1. Livestock fodder pathway: feeding rice residues 
Direct GHG emissions from the livestock pathway include GHG 

fluxes in soils through manure application (as modeled in DNDC), 
enteric emissions (primarily belching), burning manure as a cooking fuel 
source, and manure storage, as these sources represent the majority of 
emissions (Garg et al., 2016). Our findings through qualitative in
terviews in Buxar district, Bihar state for a previous study (Urban Cor
deiro et al., 2024 (under review)) found that approximately half of the 
bovine manure produced at the household level is placed on the field 
and approximately half is dried and used for cooking fuel. 

The amount of enteric methane produced by a representative herd 
model for IGP based on consumption of all the rice straw yield was 
calculated using Eq. (2). 

ECH4 =Ym ∗ Yrs ∗ Es / ECH4 (2)  

Where. 

ECH4 = CH4 emissions (kg CH4 ha− 1 yr− 1) 
Ym = CH4 conversion factor based on herd model (dimensionless) 
Yrs = rice straw yield (kg DM ha− 1 yr− 1) 
Es = energy content of rice straw (HHV MJ kg− 1 DM) 
ECH4 = energy content of methane (MJ kg− 1) 

A representative herd model for IGP was comprised from the 20th 
Livestock Census (Livestock census. 20th, 2019), in which the average 
percent of each livestock category (i.e., age, sex, type, milking status) 
was estimated. Because each livestock category has a different methane 
conversion factor (Swamy and Bhattacharya, 2006), each factor was 
weighted according the representative herd model composition to arrive 
at the final derived conversion factor (Ym) of 4.74, as explained as a Tier 
2 methodology of IPCC. Es was taken as 14.08 MJ kg− 1 (Gummert et al., 
2019) and ECH4 was taken as 55.65 MJ kg− 1 (IPCC et al., 2006). 

The amount of manure produced, assuming all rice straw on a per 
area yield basis was consumed, by bovines was calculated using Eq. (3) 
(modified on a per area yield basis, IPCC et al., 2006). 

VS= [ ∗ (1 − DE)+ (UE∗)] ∗
[(

1 − ASH
18.45

)]

(3)  

Where. 

VS = volatile solid excretion on a dry-organic matter basis (kg ha− 1 

yr− 1) 
GE = gross energy of straw consumed (MJ ha− 1 yr− 1) 
DE = digestible energy fraction 
(UE * GE) = urinary energy expressed as fraction of GE 
ASH = ash content of manure expressed as a fraction of the dry 
matter feed intake 

The digestible energy fraction (DE) was taken as 0.55 as the given 
coefficient for the Indian Subcontinent (IPCC et al., 2006), with UE =
0.04 for most ruminants and ASH = 0.08 for cattle from IPCC et al. 
(2006). Gross energy of straw consumed was calculated using Eq. (4). 

GE=Yrs ∗ Es (4)  

Where. 

GE = gross energy of straw consumed (MJ ha− 1 yr− 1) 
Yrs = rice straw yield (kg ha− 1 yr− 1) 
Es = energy content of rice straw (MJ kg− 1) 

The energy content (HHV) of rice straw (Es) was taken as 14.08 MJ 
kg− 1 DM (Gummert et al., 2019). Of the manure produced (volatile 
solids), it was assumed that half was placed back on the field five days 
before the start of the rice season and half was burned in cookstoves. For 
field application in DNDC, the percent nitrogen in the manure was taken 
as 2.2% (dry and ash-free basis), a conservative value was selected given 
the low intensity livestock systems of this region (Font-Palma, 2019). 

Tier 2 emission estimates for CH4 and N2O were applied to manure 
storage (Garg et al., 2016), as farmers store manure daily until it is taken 
out to the field before dry tillage pre-monsoon or used as cook fuel. CH4 
and N2O emissions were calculated with Eq. (5) and Eq. (6), respectively 
(IPCC et al., 2006). 

ECH4-manure =VS ∗ Bo ∗ 0.67 ∗ MCF (5)  

Where. 

ECH4-manure = CH4 emissions from manure storage on a per area yield 
basis (kg) 
VS = total volatile solids excreted on a per area yield basis (kg dry 
matter) 
Bo = maximum methane producing capacity of manure excreted (m3 

CH4 kg− 1 of VS excreted) 
MCF = methane conversion factor for solid manure storage system 

Bo was taken as 0.13 m kg− 1 VS for dairy cattle on Indian Subcon
tinent (IPCC et al., 2006). The conversion factor of 0.67 kg m− 3 is used to 
convert m3 CH4 to kg CH4. MCF was taken as 0.05 for ‘warm’ annual 
average ambient temperature (Garg et al., 2016). 

EN2O-manure =Nf ∗ VS ∗ EFn ∗ 44
/

28 (6)  

Where. 

EN2O-manure = direct N2O emissions from manure management sys
tem (kg N2O) 
Nf = fraction of N in volatile solids excreted (dry and ash-free basis) 
VS = total volatile solids excreted on a per area yield basis (kg dry 
matter) 
EFn = emission factor for direct N2O emissions from manure man
agement system (kg N2O–N/kg N) 

Nf was taken as 0.022 (dry and ash-free basis) (Font-Palma, 2019). 
EFn was taken from Ippolito et al. (2020). The conversion of 44/28 
converts N2O–N emissions to N2O emissions. 

Tier 1 emission estimates for CH4 and N2O were applied to dung 
fueled cookstoves in Eq. (7) (IPCC et al., 2006). 

E= FC ∗ EF (7)  

Where. 

E = emission of a given GHG by type of fuel (kg GHG) 
FC = amount of fuel combusted (TJ) 
EF = emission factor (kg gas TJ− 1) 

The emission factors taken for CH4 and N2O were 281 kg TJ− 1 and 
27 kg TJ− 1, respectively (IPCC et al., 2006). The amount of fuel com
busted for manure (FC) was found using Eq. (8). 
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FC=NCV ∗ M (8)  

Where. 

FC = The amount of fuel combusted (TJ) 
NCV = The net caloric value (NCV) of cattle dung (TJ kg− 1) 
M = mass of cattle dung on dry-organic matter basis (kg) 

The net caloric value (NCV) of cattle dung was taken as 17.8 MJ kg-1 
(converted to TJ kg− 1) for dry manure (Thygesen and Johnsen, 2012). 

2.4.2. Biochar pathway: pyrolysis of rice residues 
The net avoided GHG emissions (CO2-e) were summarized using Eq. 

(9) (Woolf et al., 2021). Biochar was not included within the DNDC 
simulations, but instead the net avoided GHG emissions were subtracted 
ex post facto. These estimates excluded the CH4 abatement effect of 
biochar additions. Due to the lack of long-term studies, it is unknown if 
this effect persists beyond a few seasons and, therefore, was excluded. 

Biomass pyrolysis can be conducted using a wide range of technol
ogies. One difference between processes involves how the heat is sup
plied to the biomass feedstock. The most common heating method is 
indirect heat through the walls of an enclosed vessel from which air is 
excluded. Other means of heating include, for example, microwave 
pyrolysis, or direct heating by using high temperature particulate solids 
(such as sand) or fluids (which may be either gases, e.g., in a fluidized 
bed, or liquids, e.g., in a molten salt reactor) (Boateng et al., 2015). The 
heating rate is also an important factor, with processes generally classed 
as either fast pyrolysis (in which finely divided biomass is rapidly 
heated), or slow pyrolysis which can accommodate larger particle sizes 
and lower heat-transfer coefficients. Fast pyrolysis is typically employed 
in the production of liquid biofuels, with biochar being a by-product and 
generally has higher capital costs than slow pyrolysis (Tan et al., 2021). 
Other than heating rate, the other critical parameter in determining 
biochar properties and yields is the pyrolysis temperature (Ippolito 
et al., 2020). We assumed that pyrolysis will be conducted at a “medium 
temperature” using the temperature-range classifications adopted in 
Woolf et al. (2021), in which medium temperature is defined as pyrol
ysis between 450 and 600 ◦C. This temperature range is typical of most 
current pyrolysis equipment. Temperatures above 600 ◦C typically 
require higher cost materials to withstand the conditions, greatly 
increasing the capital cost (Woolf et al., 2017). Temperatures below 
450 ◦C, on the other hand, generate a less persistent biochar product 
with a greater labile carbon fraction that can have adverse impacts on 
crop production such as leading to nitrogen immobilization. Tempera
tures lower than 350 ◦C (such as in torrefaction and hydrothermal 
carbonization) do not produce a residue that is sufficiently carbonized or 
recalcitrant to be considered as biochar (Deenik et al., 2010; Liu et al., 
2018b). 

GHGbc =Mbc ∗ Fperm ∗ 44
/

12 (9)  

Where. 

GHGbc = net avoided GHG emissions in units of CO2-equivalent 
(CO2-e) 
Mbc = mass of biochar C added to soil (kg) 
Fperm = the fraction of biochar organic carbon remaining after 100 
years 
44/12 = conversion factor from C to CO2-e 

The original published equation (Woolf et al., 2021) also includes 
avoidance of N2O emissions, but because our biochar application rate is 
below 10 Mg C ha− 1, N2O was negligible in this context. Because the 
amount of organic carbon in the biochar and the pyrolysis temperature 
may vary, the estimate of Fperm is 0.71 (SE: 0.03), where we assume 
medium-temperature pyrolysis is used and the modeled permanence of 

the biochar is evaluated over 100 years at the mean annual temperatures 
of global croplands (14.9 ◦C) (Woolf et al., 2021). Mbc was found by 
multiplying the biochar yield faction (Fby) by the rice straw yield (Yrs) as 
calculated in Eq. (10). 

Mbc =Fby ∗ Yrs ∗ D (10)  

Where. 

Mbc = mass of biochar C added to soil (kg) 
Fby = biochar C yield faction (dry, ash-free) 
Yrs = yield rice straw (kg) 
D = dry matter fraction of fresh rice straw 

D was taken as 0.86 (Jain et al., 2014). Biochar C yield faction (dry, 
ash-free) (Fby) was found through an empirical regression model as a 
function of pyrolysis temperature T (K) and feedstock lignin mass frac
tion (Lf) in Eq. (11) (Woolf et al., 2014). 

Fby = 0.126 + 0.273 ∗ Lf + 0.539 ∗ exp(-0.004 ∗ T) (11)  

Lf was taken as 0.179 for rice residues, given on a dry matter basis 
(Woolf et al., 2021), as originally provided in the Phyllis2 database 
(ECN, 2021). T assumes a medium pyrolysis temperature of 798.15 K 
(525 ◦C), as pyrolysis between 450 and 600 ◦C is considered a medium 
temperature range (Woolf et al., 2021). 

2.4.3. Burning: in situ open burning of rice residues 
The total GHG emissions N2O and CH4 from burning were found 

using Eq. (12) (IPCC et al., 2006). 

E=Rmb ∗ EF (12)  

Where. 

E = total emissions of the species (kg) 
Rmb = mass of rice residue burned (kg) 
EF = emission factor (g kg− 1) 

EF (g kg− 1) of rice residue burning for N2O was taken as 0.48 (Sahai 
et al., 2007) and EF for CH4 was taken as 9.59 (Ravindra, Singh and Mor, 
2019a). Both are Tier 2, country-specific emission factors. The mass of 
rice residue burned (Rmb) found using Eq. (13), applied by (Ravindra, 
Singh and Mor, 2019b). 

Rmb =Y ∗ R ∗ D ∗ B (13)  

Where. 

Y = rice yield (kg ha− 1) 
R = production to residue ratio 
D = dry matter fraction 
B = burn efficiency fraction 

R was taken as 1.5 (Jain et al., 2014). We assumed all available crop 
residue was burned. D was taken as 0.86 (Jain et al., 2014). The burn 
efficiency fraction (B) was taken as 0.89 (Turn et al., 1997). Thus, we 
can assume 11% of carbon remains in pyrogenic carbon (PyC) form. PyC 
encompasses a continuum of pyrogenic organic material (charred 
biomass, charcoal, and soot), and while mean residence time of these 
carbon forms vary in the environment, most PyC is relatively stable 
across decadal or centennial timeframes (Bird et al., 2015; Santín et al., 
2016). As such, the net avoided GHG emissions (CO2-e) through PyC 
were summarized using the previous biochar equation (Eq. 9). The mass 
of biochar C added to soil from burning (Mbc) was found using Eq. (8) 
and multiplying the fraction of pyrogenic carbon remaining after burn 
(Pf) and the fraction of remaining PyC in situ (Pr) (i.e., excluding at
mospheric PyC (black carbon) transported in smoke) (Eq. (14)). 
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Mbc =Fby ∗ Yrs ∗ D ∗ Pf ∗ Pr (14)  

D is taken as 0.86 (Jain et al., 2014). Pf is the inverse of the burn effi
ciency fraction (B = 0.89; Turn et al., 2017) of 0.11. Pr is the fraction of 
PyC remaining on site and taken as 0.9895 (Santín et al., 2016). There is 
a large uncertainty around the percent of black carbon released into the 
atmosphere, so this calculation only accounts for estimates of PyC that 
remain on site. 

2.4.4. Conversion of GHG fluxes to a common unit 
The total CH4 and N2O emissions were converted to their CO2- 

equivalent (CO2-e) using Eq. (15). 

TCO2e100 =CH4 ∗ GWPN2O + N2O ∗ GWPCH4 (15) 

The global warming potentials of these non-CO2 gases were taken as 
27.9 and 273 for CH4 and N2O for a 100-year period (IPCC, 2021). 

3. Results 

3.1. Characterizing the range of rice hydrologic conditions in Eastern 
India 

The daily measured water conditions from the nine representative 
sites used for each hydrologic category (i.e., dry, median, wet) in the 
DNDC model simulations are presented in Fig. 2. Drained conditions, 
depicted in brown, denote days when a free water surface is below 15 cm 
depth. Saturated conditions, depicted in red, denote days without 
flooding but with saturated conditions within the top 15 cm of soil. 
Flooded conditions, denoted in blue, represent days with ponded water 
above the soil surface. The range of observed conditions is extreme, with 
‘wet’ fields in a high rainfall year like 2021 almost always flooded and 
‘dry’ fields in a drier year like 2022 almost continuously drained. The 
most representative ‘median’ sites are characterized by a higher number 
of transitions between flooded and drained conditions, but this too de
pends on the nature of the climate year and the interaction between 
precipitation patterns and landscape drainage factors. Note that the 
representative sites for 2020 and 2021 are from a single district, 
reflecting the high level of short-range variation in field water condi
tions. In 2020 and 2021, most fields were irrigated during land prepa
ration, before daily field water measurements began. Most farmers 
irrigated during the 2022 growing season, as it was a very dry climate 

year and data was derived from across Bihar state with varying site 
characteristics. Given the central influence of the soil water environ
ment on greenhouse gas emissions in rice (Nikolaisen et al., 2023), our 
results suggest that accurate GHG estimations in Eastern India cannot be 
developed without accounting for hydrologic complexity. 

3.2. Field hydrology, in situ recycling of crop residues, and methane 
emissions 

Results of shorter-term (10-year) DNDC methane emissions simula
tions are presented to visualize patterns of interannual variability of 
fluxes based solely on contrasting hydrologic conditions with no crop 
residue returns (Fig. 3). Mean annual CH4 emission were 0.08, 0.22, and 
0.31 Mg ha− 1 over the 10-year period, with the wetter production 
environment consistently producing approximately 3-times more CH4 
than the dry environment with emissions from the median production 
environment more closely resembling the wet sites in high rainfall years 
(e.g., simulation year 3) and the dry sites in low rainfall year (e.g., 
simulation year 6). Variability between years was also high with CH4 
emissions in the median hydrology scenario more than doubling in a 
wetter climate year compared to a drier climate year. To generate robust 
baseline GHG emission estimates for Eastern India with measured field 
data, model results highlight the need for multi-year assessments taken 
across hydrologic gradients. 

Given the well-established linkages between soil carbon and 
methane production, we then explored the interactions between rice 
field hydrology, rice residue recycling, and the methane emissions over 
a 100-year simulation (Fig. 4). For all hydrologic categories, recycling of 
crop residues increased methane emissions, but these increases were 
much lower in relative and absolute terms in the dry rice production 
environment. In the treatments with no residue return, the mean sea
sonal CH4 fluxes from the median and wet categories were 2.5 and 3.6 
times higher than those from the dry category. With full residue return, 
the mean seasonal CH4 fluxes from the median and wet categories were 
2.8 and 4.0 times higher than those from the dry category. 

Within each hydrologic class, the influence of residue on CH4 fluxes 
was more variable from year-to-year in the median and wet production 
environments. In the dry environment, the CH4 implications for residue 
return were small (mean of 0.08 Mg ha− 1 without residue; mean of 0.11 
Mg ha− 1 with residue) with a 37.5% (0.03 Mg ha− 1) mean annual 
methane flux difference between no residue (NR) and residue return. 

Fig. 3. DNDC simulated emissions from rice systems across three hydrology categories. Simulations are conducted for a 10-year period with no recycling of 
crop residues. 
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This difference increased to 48.1% (0.10 Mg ha− 1) and 48.0% (0.14 Mg 
ha− 1) in the median and wet hydrology categories, respectively. 

3.3. Rice residue management strategies and farm-scale GHG emissions 

Net GHG emissions associated with N2O, CH4, and soil carbon 
sequestration were estimated for the four rice residue management 
strategies across three hydrologic production environments for rice 
through a combination of Tier 1, 2, and 3 modelling approaches. Soil- 
based net emissions were added to non-soil emissions to estimate total 
direct GHG fluxes (Table 1) and are presented as annual mean values 
over a 100-year period. With the exception of biochar, differences across 
the hydrologic categories were substantially larger than net emission 
differences among the rice residue management strategies within each 
hydrologic class. Residue burning was estimated to result in lower net 
emissions than in situ residue recycling in all but the dry environment. 
Net emissions from residue recycling were on par with the livestock 
strategy in the median and wet environments. However, in the dry rice 
environment, the livestock strategy was estimated to generate around 
twice the emissions of either burning or recycling. Modest net emission 
advantages were characterized by the livestock strategy (11.0 Mg CO2-e) 
compared to recycling (11.8 Mg CO2-e) in the wet environment. 

For all residue management pathways, total GHG emissions 
increased toward a more net positive flux as environments became 
wetter. Soil CH4 had the largest flux for all pathways and all hydrology 
categories, except for the biochar pathway in the dry hydrology cate
gory. Negligible fluxes were grouped as ‘other’, which included soil N2O 
in all pathways, manure and cookstove emissions from the livestock 
pathway, and combustion emissions from the burning pathway 
(Table S4). 

Both residue incorporation and livestock fodder pathways had 

higher net GHG emissions than residue burning in all cases, except for 
incorporation in dry environments which was comparable to (slightly 
lower than) burning (Fig. 5). In all environments, the biochar pathway 
had the lowest net GHG emissions, although these were only net nega
tive in the dry sites. In all other scenarios, CH4 emissions outweighed the 
SOC sequestration potential. 

In dry environments, the livestock pathway had the highest GHG 
emissions but the difference between livestock fodder and residue 
incorporation strategies became negligible as the environments became 
wetter. In wet environments, the negative GHG implications of the 
livestock pathway are slightly less than in situ incorporation despite 
other prospects for GHG creation associated with livestock, including 
enteric fermentation, manure storage, and dung-fueled cookstoves. 

3.4. DNDC model comparisons 

In comparison with prior field studies in rice systems, our simulated 
time-averaged emissions of 83–447 kg CH4 ha− 1 yr− 1 and 0.010–0.020 
kg N2O ha− 1 yr− 1 (equivalent to 62–335 kg C ha− 1 yr− 1 and 
0.007–0.013 kg N ha− 1 yr− 1, respectively) generally fall within the 
measured emission ranges from field studies in the South Asia. The 
higher end of these ranges corresponds to simulations with residue re
turn, which show slightly higher CH4 emissions than typical of published 
field studies which often do not include full residue return. A field study 
across 11 rice-based systems in India measured annual CH4 emissions 
ranging from 4.6 to 436.5 kg C ha− 1, and also found that DNDC 
adequately simulates seasonal fluxes (Babu et al., 2006). Other studies 
from South India have recorded lower CH4 emissions, with monsoon 
season fluxes ranging from 113.5 to 164.5 kg CH4 ha− 1 and 0.73–1.23 kg 
N2O ha− 1 (Oo et al., 2018). Another study argued that N2O fluxes in 
intermittently-flooded rice systems have been largely underestimated 

Fig. 4. Annual rice season methane flux from 100-year DNDC simulations. Simulations contrast emissions for the three hydrologic classes with and without in situ 
residue recycling. 

Table 1 
Net greenhouse gas emissions for four rice residue management strategies.   

Pathway Season average GHG fluxes from soils (Mg CO2-e) Other direct non-soil GHG fluxes (Mg CO2-e) Total direct GHG fluxes (Mg CO2-e)   

Dry Median Wet  Dry Median Wet 

1 Burning (in situ) 2.1 5.7 8.3 0.4 2.5 6.1 8.7 
2 In situ incorporation 2.3 7.9 11.8 0 2.3 7.9 11.8 
3 Livestock fodder + manure return 2.2 6.0 8.8 2.2 4.5 8.2 11.0 
4 Biochar 2.1 5.7 8.3 − 2.5 − 0.4 3.2 5.8  
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and not given enough attention in GHG inventories, having found 
measured seasonal N2O fluxes ranging from 0 to 33 kg N2O ha− 1 in their 
India-based field study (Kritee et al., 2018). DNDC does not simulate 
N2O in flooded conditions (Babu et al., 2006), but since many of our 
simulations did not have persistent flooding, the reasoning is not clear. 
Given the inevitable uncertainties with both modeled and measured 
GHG emission estimates, our results are best understood as indicative 
values that suggest the relative emission differences that are generating 
by rice residue practices and hydrologic variation. 

DNDC uncertainty and sensitivity analyses are included in the Sup
plementary Information. 

4. Discussion 

Agricultural burning in South Asia is a major concern for public 
health from PM2.5 emissions (Liu et al., 2018a; Montes et al., 2022; Mor 
et al., 2022). While it is useful to compare this practice to other rice 
residue management strategies from the perspective of GHG emissions, 
avoiding the burning of crop residues must remain a policy imperative 
independent of implications for climate change mitigation. Beyond the 
boundaries of the current study, future research should emphasize 
comprehensive life cycle assessments that compare positive and nega
tive consequences for different rice residue management strategies, 
including air quality and agronomic benefits derived from in situ residue 
recycling in diverse crop production contexts. 

The variation in GHG emissions among the four strategies—burning, 
soil incorporation, livestock fodder, and biochar—primarily resulted 
from soil-derived methane emissions. Wetter sites resulted in a general 
rise in methane emissions across all scenarios due to the proliferation of 
anoxic conditions in the soil, facilitating methane production through 
methanogenesis. The introduction of organic amendments, such as the 
incorporation of residues into the soil or the partial return of livestock 
manures, notably augmented soil-derived methane emissions within 
these scenarios. Various studies (Tang et al., 2014; Zou et al., 2004) have 
demonstrated that the retention of post-harvest residue intensifies 
methane emissions. The interaction between crop residues and the hy
drological context will determine if the decomposition of organic com
pounds is carried out in aerobic (well-aerated soils) or anaerobic 
(flooded soils) conditions, thus influencing methane production. In the 
context of the livestock pathway, methane emissions originating from 
enteric fermentation constituted the second largest source. This emis
sion source, substantial in livestock systems, is influenced by diet and 
herd type. For instance, in India, enteric fermentation contributes to 
91% of total methane emissions from livestock (Chhabra et al., 2013), 
primarily attributed to the feeding of low-quality rice residues with poor 
digestibility (Sirohi and Michaelowa, 2007). 

Despite the fact that carbon offset markets have previously been 
suggested as an opportunity to incentivize more sustainable crop pro
duction practices (Gorain et al., 2021), our results suggest that the most 
commonly supported strategy of building SOC stocks will typically in
crease rather than decrease emissions in the context of rice-based agri
cultural systems (with the possible exception of residue incorporation in 
dry sites). In Eastern India, some fields remain persistently flooded due 
to factors like landscape-scale drainage patterns that are not readily 
controlled by farmers. In our study when rice residues are recycled, 
these (‘wet’) fields are predicted to generate almost 50% more GHG 
emissions compared to average (‘median’) hydrologic production envi
ronments, an observation that is consistent with measured field data (Liu 
et al., 2014; Xu et al., 2015). Over a 100-year timeframe, the counter
vailing GHG emission effects of increasing SOC stocks with residue 
recycling were estimated to be very small in our simulations since stock 
increases diminish significantly with time (Lugato et al., 2018). Other 
research from India suggests that the use of conservation agriculture for 
in situ management of rice residues (i.e., retention at the soil surface) can 
reduce CH4 emissions when residues are recycled (Sapkota et al., 2015), 
but it is important to note that conventional tillage with residue incor
poration is the most feasible near and medium-term option in Eastern 
India given the slow adoption rates of conservation agriculture 
compared to elsewhere in the South Asia region where investments have 
been strong and farmers are better positioned to make capital in
vestments in new equipment (Keil, D’souza, & McDonald, 2015). 

Our full accounting of emissions for crop residue cycling suggests 
that carbon offset markets in Eastern India must look beyond their 
current emphasis on increasing soil carbon storage to reduce GHG 
emissions in rice-based systems. As such, the opportunity to use carbon 
financing as a mechanism to disincentivize burning appears to be limited 
in Eastern India. Biochar, however, does appear to offer significant 
promise as a mitigation strategy across hydrologic production environ
ments. Some field studies also suggest that biochar may also reduce CH4 
emissions in soils (Jeffery et al., 2016), by as much as 72% in upland rice 
and 12% in paddy rice (Ji et al., 2018); these processes are not currently 
simulated in DNDC, hence we may be underestimating the mitigation 
value of biochar. Although the technical potential of biochar is 
compelling, economic feasibility, social desirability, and off-farm 
emission costs of biochar are not accounted for in this study. For 
example, the cost of biochar in its ready-to-use form significantly hin
ders its accessibility for low-income farmers. We also assumed “clean” 
pyrolysis equipment with negligible emissions and negligible emissions 
from biomass transport. Future feasibility studies and extension strate
gies for biochar in Eastern India should consider the full costs, economic 
and environmental, of small-scale and large-scale infrastructure options 
(Bhatnagar et al., 2022) together with an understanding of labor and 

Fig. 5. Negligible fluxes were grouped as ‘Other’, which included soil N2O in all pathways, manure and cookstove emissions from the livestock pathway, and 
combustion emissions from the burning pathway. Values for ‘Other’ are provided in Table S4. 
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other potential constraints for biochar production at the household and 
community levels (Müller et al., 2019). 

Aside from biochar, our results do not suggest that residue recycling 
or livestock feeding as viable strategies for reducing net GHG emissions 
compared to burning. Nevertheless, measured differences in field hy
drology were found to have a profound impact on methane emissions 
and, consequently, net emissions, a result consistent with established 
principles (Krüger et al., 2001). Our results suggest that rice residue used 
as fodder from comparatively dry fields results in higher net GHG 
emissions than alternative strategies, suggesting that geographic tar
geting criteria can also be used to set priorities for livestock production. 
While recurrent drainage (i.e., ‘alternate wetting and drying’ – AWD) is 
often a suggested approach to decreasing CH4 emissions in rice (Liu 
et al., 2014), farmers often lack the ability to control water during the 
monsoon season when inundating rainfall and landscape-scale controls 
on drainage are the principle governing factors of the field water envi
ronment (Bonsor et al., 2017). In Eastern India, mitigation strategies for 
rice-based systems should likely shift away from water management and 
SOC increase to landscape characterization that identifies comparatively 
‘safe’ places to retain carbon in the landscape to limit CH4 emissions, 
with ex situ residue management options prioritized for ‘risky’ envi
ronments that are intrinsically prone to generate methane. On-going 
research by our group in Eastern India seeks to characterize and pre
dict the long-term hydrologic behavior of rice fields in the region to help 
guide such efforts. Similar studies are needed across the principal rice 
producing regions of South Asia where monsoon season rice crops are 
cultivated. 

Beyond farm-scale analysis of GHG emissions for rice residue man
agement alternatives, comprehensive LCAs are needed that include 
other impact categories, such as air quality, food security, and livelihood 
considerations. Ideally, these would be ‘consequential’ LCAs that also 
account for indirect impacts on factors such as land use changes 
(Schmidt, 2008), and would aggregate evidence for multiple impact 
categories while expanding the system boundary to include activities 
such as tractor fuel used for residue incorporation, strategies for 
moderating enteric fermentation, transportation costs related to biochar 
production, and black carbon emissions from burning. Black carbon 
emissions have a substantial impact on increasing the amount of solar 
radiation absorbed by the glaciers in the Himalayan region, thus raising 
temperatures and increasing glacier melt. Nearly 3% of the atmospheric 
black carbon impacting the Himalayan region is derived from agricul
tural burning in South Asia (Alvarado et al., 2018). 

This study has multiple limitations and recommendations. Climate 
change and plausible future changes in irrigation practices were not 
considered in this study and should be explored in future studies. There 
are pathways for rice residue management that exist beyond the farm- 
scale that were not included in this study, such as bioethanol, mush
room production, and uses in the paper industry (Dutta et al., 2022). We 
recommend that additional pathways are included in future studies. A 
diverse set of ecosystem services were not quantified in this study, 
including the potential co-benefits of building SOC in soils from an 
agronomic perspective (Bünemann et al., 2018; Powlson et al., 2011). 
Although there is evidence that our DNDC modelling approach may 
underestimate N2O emissions (Arenas Calle et al., 2022; Kritee et al., 
2018), since the overall contribution of N2O to net GHGs was negligible, 
improved estimates of this flux are unlikely to alter the main conclusions 
substantively. In the livestock pathway, there are multiple potential 
impacts that are very difficult to quantify. As liquefied petroleum gas 
(LPG) cookstoves are promoted in rural India, the ratio of manure used 
for cooking versus soil improvement is likely to shift; yet the cost of LPG 
is limiting the full transition to LPG in the near future (Gould and 
Urpelainen, 2018). Rice residues have traditionally been accepted as a 
suitable livestock fodder in Eastern India, unlike in Northwestern India 
(Erenstein and Thorpe, 2010), but feeding strategies are beginning to 
shift away from the use of rice residues as fodder (Bihar Livestock Master 
Plan, 2018). It is assumed that the changing herd size, herd type, and 

feeding practices will not only have implications for fodder demand, but 
will also have implications for emissions associated with enteric 
fermentation (Jha et al., 2011). 

5. Conclusion 

This study investigated the fate of rice crop residues and the influ
ence of the field water environment on net GHG emissions in Eastern 
India using a combination of Tier 1, 2, and 3 modelling approaches. 
Results suggest that observed variations in field hydrology have an 
outsized effect on methane emissions, with wetter sites exhibiting higher 
net GHG emissions than drier sites across all residue management 
strategies, thus aligning with our hypothesis. Our hypothesis was correct 
given that in drier environments, biochar and incorporation pathways 
had the lowest net GHG fluxes. While in wetter environments, the bio
char and burning pathways resulted in the lowest net GHG fluxes. 

In relative and absolute terms, retaining residues through soil 
incorporation in comparatively wet sites results in very high emissions, 
suggesting that the current carbon ‘offset’ market’s focus on increasing 
SOC stocks is inadequate for prioritizing and geographically targeting 
mitigation opportunities in Eastern India. Our results suggest that 
landscape-scale characterization of the hydrologic environment can be 
used to identify ‘safe’ places to add more carbon to soils while avoiding 
excessive CH4 emissions. Recommendations for no-burn alternatives 
need to be context-specific, considering what farmers can and cannot 
manage (i.e., water levels), with a clear expectation of outcomes across 
multiple sustainable development objectives (i.e., burning abatement 
and/or soil carbon sequestration). 
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