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Abstract: In anticipation of climate changes, strategic soil management, encompassing reduced
tillage and optimized crop residue utilization, emerges as a pivotal strategy for climate impact
mitigation. Evaluating the transition from conventional to conservative cropping systems, especially
the equilibrium shift in the medium to long term, is essential. ARMOSA, a robust crop simulation
model, adeptly responds to varied soil management practices such as no tillage, minimum tillage,
and specific straw management options such as chopping and incorporating crop residue into the
soil (with or without prior nitrogen and water addition before ploughing). It effectively captures
dynamic fluctuations in total organic carbon over an extended period. While challenges persist
in precisely predicting grain yield due to climatic intricacies, ARMOSA stands out as a valuable
and versatile tool. The model excels in comprehending and simulating wheat cultivar responses in
dynamic agricultural ecosystems, shedding light on phenological patterns, biomass accumulation,
and soil organic carbon dynamics. This research significantly advances our understanding of the
intricate complexities associated with past wheat cultivation in diverse environmental conditions.
ARMOSA’s ability to inform decisions on conservation practices positions it as a valuable asset for
researchers, agronomists, and policymakers navigating the challenges of sustainable agriculture
amidst climate change. Its real-world significance lies in its potential to guide informed decisions,
contributing to global efforts in sustainable agriculture and climate resilience.

Keywords: long-term experiment; modelling; agronomy; calibration; soil organic carbon; sustainability

1. Introduction

Cereals serve as the primary global food source, with the European Union ranking
as the largest wheat producer [1]. Italy, following Canada, currently has the second-
highest global production of durum wheat, annually producing 4.2 million tons, primarily
concentrated in the southern regions and islands, which account for 65.6% [2].

Global warming (GW) significantly impacts climate conditions, leading to temperature
rises, reduced rainfall, increased severity and frequency of extreme events, and elevated
atmospheric carbon dioxide levels [3–5]. Consequently, strategies are imperative to adapt
to and mitigate the repercussions on crop yield and product quality. Adaptation strategies
seek to minimize adverse effects on agricultural production, while mitigation strategies
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aim to reduce greenhouse gas emissions and sustain or augment the organic carbon content
in soil. Integrated analyses are crucial for adjusting cropping systems to evolving climate
conditions, especially in regions such as the Mediterranean basin with consistent agronomic
and pedoclimatic characteristics.

Recent decades have witnessed detrimental impacts of GW on wheat yields in lower-
latitude regions and increased yields in higher-latitude zones [6]. Global projections affirm
this trend [7]. A limited body of literature has explored the specific impacts of GW on
Italian production [8,9], emphasizing the necessity for accurate climate data, especially in
regions with high pedoclimatic and topographical variability, such as Italy [10].

In Northern Apulia’s Foggia province, durum wheat is commonly rotated with tomato
or irrigated high-income crops over two or three years. Traditional agronomic practices
involve mouldboard ploughing, additional tillage, and straw and stubble management
through burial or burning [11]. Evaluating soil organic matter dynamics and crop yield in
response to tillage through field experiments is expensive and time-consuming. Calibration
and validation of process-based models offer a viable solution, aiding in the assessment of
diverse soil and crop management practices [12–15].

The literature has explored the effects of soil and crop management practices of con-
servation agriculture (CA) on crop growth, yield, and nutrient dynamics [16,17]. However,
most simulation models struggle to depict the long-term effects of CA practices such as no
tillage (NT), minimum tillage (MT), and traditional methods [18–20].

The integration of process-based crop modelling with climate data is vital for under-
standing the effects of GW on agricultural production. ARMOSA (Analysis of cRopping
systems for Management Optimization and Sustainable Agriculture) has emerged as a
suitable model for simulating various soil-management practices in diverse environmental
conditions [15,21,22]. Its adaptability and reliability in simulating durum wheat growth in
the Mediterranean environment make it well suited for this study.

Operating on a daily time-step basis, ARMOSA provides fine-grained analyses, ac-
curately capturing daily fluctuations in pedoclimatic conditions. Its holistic approach, en-
compassing water balance, evapotranspiration, and nitrogen and carbon cycling, offers a
comprehensive understanding of the crop–soil system. The model’s modularity enhances
adaptability, facilitating adjustments for different experimental setups and changing scenarios.

This research aimed to evaluate ARMOSA’s current performance, assessing its abil-
ity to replicate essential aspects of durum wheat growth, including phenology, biomass
accumulation, grain yield, and soil organic carbon dynamics. It introduced a performance
scoring system, conducted comparisons with observed data, and assessed robustness
through a validation process. Utilizing experimental data from a long-term durum wheat
experiment (LTE) in Foggia, Southern Italy, spanning from 1977 to the present, the study
explored the impacts of different straw and soil management practices, including nitro-
gen and water addition, no tillage, and minimum tillage. It specifically investigated
cultivar-specific variations and soil/straw option impacts on wheat growth and soil organic
carbon dynamics.

2. Materials and Methods
2.1. Experimental Field

All the field experiments were carried out at Podere 124 (P124) Experimental Sta-
tion, located in Foggia, Apulia region, Southern Italy (latitude, 41◦88′7′′ N; longitude,
15◦83′05′′ E; altitude, 90 m a.s.l.), in two experimental parcels: P124_P30, used to calibrate
the model, and P124_P32, used to validate it.

The soil, a vertisol of alluvial origin [23], is classified as silty clay with the following
physicochemical properties: 48.5% clay, 38.7% silt, 12.8% sand, bulk density: 1.11 t m−3,
organic matter: 2.1%; total N: 0.122%; NaHCO3-extractable P: 41 ppm; NH4OAc extractable
K2O: 1598 ppm; pH: 8.3; water content at field capacity: 0.396 m3 m−3; water content at
permanent wilting point: 0.195 m3 m−3; available water: 202 mm m−1.
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The climate is classified as “accentuated thermo-Mediterranean” [24], characterized
by temperatures below 0 ◦C in winter and above 40 ◦C in summer, with an annual average
of 550 mm of rainfall, mostly concentrated in winter months [11]. The daily meteorological
data of temperature, humidity, rainfall, wind parameters, and solar radiation were recorded
at the meteorological station located at P124.

2.2. LTE Datasets

The LTE dataset used to parametrize ARMOSA and to check the robustness and
reliability of the model consisted of data from winter durum wheat in a continuous cropping
system since 1977. The winter durum wheat underwent three different straw management
practices, namely: (i) chopping and incorporation of the crop residue into the soil by
ploughing (T2); (ii) chopping, addition of 150 kg of mineral nitrogen per hectare on the straw,
and incorporation of the crop residue into the soil by ploughing (T5); and (iii) chopping,
addition of 150 kg of mineral nitrogen per hectare, and application of 500 m3 ha−1 of
irrigation water on the straw, followed by incorporation of the crop residue into the
soil (T8).

The experimental design utilized a randomized block design with five replications,
each consisting of an 8 m × 10 m cropped area with a spacing of 15 cm (between two rows)
× 5 cm (along the rows). These replications were situated within a single experimental plot
(total area of 3500 m2), referred to as P_30.

For all experimental treatments, sowing, which took place in the first half of November,
was preceded by fertilization with superphosphate (100 kg P2O5 ha−1), ploughing (with
soil incorporation of the chopped straw), harrowing with a disc harrow, and tilling with a
rotary tiller. A dose of 100 kg N ha−1 was supplied to the crop as top dressing in the first
half of March, and the harvest was performed in the middle two weeks of June.

Before harvesting, plant samples were collected over an area of 2 m2 to estimate the
total aboveground dry biomass (TDM) by placing the sample in a ventilated oven at 78 ◦C
until a constant weight was reached.

The wheat harvest took place using a plot combine, which determined, thanks to
a portable module, the grain yield for each replication and the corresponding moisture
content (from which the dry weight of grain was calculated).

In addition, from 1983 to 2009, the soil organic carbon content (TOC; kg ha−1;
0–40 cm depth) was determined discontinuously on three soil samples of about 500 g
each for each replication.

In P_30, the following cultivars (cvs) succeeded each other over the harvesting years:
Valgerardo 1978–1982, Appulo 1983–1987, Latino 1988–1992, Appio 1993–1996, Simeto
1997–2000 and 2007–2013, Ofanto 2001–2006, Claudio 2014–2018, and Saragolla 2019–2021.

The consistency of ARMOSA was probed on a separate dataset with the same parametriza-
tion process. Here, figures were gathered from another LTE consisting of wheat in a continuous
cropping system since 2003, cultivated under two CA schemes: NT and MT.

The experimental design was planned in a randomized block design containing three
replications for each treatment with an area of 500 m2 (20 m × 25 m) arranged in one
experimental plot (P_32) with a total surface of 4450 m2.

NT consisted of sowing (in the first half of November) with a no-till seeder and without
further disturbance of soil.

Under MT, a single field operation before sowing was performed using a combined
farm device with a subsoiler and a rotary cultivator disturbing the first layer of soil at a
depth of 0–0.10 m.

For all soil management, straw and stubble were chopped after the harvest and
spread back.

Mineral nitrogen fertilization was split into two doses: basal dressing before sowing
in the form of di-ammonium phosphate (36 and 92 kg ha−1 of N and P2O5, respectively)
and ammonium nitrate as top dressing (68 kg ha−1) in the first half of March. Weeds were
kept under control using chemicals applied before sowing and after emergence.
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The cvs that followed one another over the years in P_32 were: (i) Simeto, from 2003
to 2010; (ii) Claudio, from 2011 to 2018; and (iii) Saragolla from 2018 to 2020.

As for P_30, the plot harvester collected data about grain yield and moisture (the dry
weight of grain was calculated accordingly) for each replication, over a period from 10 June
to 25 June of the examined growing seasons.

Even for P_32, TOC (0–30 cm depth) from 2002 to 2020 (not continuously) was deter-
mined using three soil samples of about 500 g each for each replication.

When the emergence, flowering and physiological maturity stages were verified in
the experimental plots of P_30 and P_32, the corresponding calendar days were recorded
(specific for each growing season, but common to all cvs). Growing degree days (GDD; ◦C)
were computed as the daily mean temperature minus the base temperature (0 ◦C) for the
specific phenological stage accordingly.

2.3. The ARMOSA Model

ARMOSA is a cropping-system model that simulates crop- and soil-related variables
at a daily time-step as affected by pedoclimatic conditions and agronomic management.
The software is written in Java and structured with a high level of modularity. The model
simulates water balance, evapotranspiration, and N and C cycling in the soil layers as well
as crop development and growth. The soil properties (i.e., texture, bulk density, and initial
soil organic carbon) are set for each layer of the profile. The water dynamics are simulated
with the approach consisting of cascading with travel time [25].

The reference evapotranspiration is estimated using the Penman–Monteith,
Priestley–Taylor, or Hargreaves equation. Crop evapotranspiration is estimated using
the FAO 56 approach [26]. The actual evapotranspiration is determined by the water stress
factor [27], influencing both dry-matter production and partitioning.

The simulation of crop growth and development with ARMOSA adheres to the
WOFOST approach [28], with two notable differences: (i) the canopy is divided into 5 layers
with varying light interception, and (ii) development is described using the BBCH scale.

Carbon- and nitrogen-related processes are simulated much as they are in the SOILN
model [29], with some enhancements. Each input of organic matter is independently
simulated based on specific decomposition rates, C and N concentrations, and depth of
incorporation in the soil.

The required input data are as follows: daily weather data, soil properties (texture,
bulk density, soil organic carbon (TOC), with the option to enter the measured water
retention parameters), cropping system information (i.e., crop type and rotation, sowing and
harvesting dates), data on fertilizers (i.e., mineral or organic, amount, timing, application
depth, carbon-to-nitrogen ratio, ammonia and nitrate content), irrigation (i.e., water amount,
timing, automatic irrigation as a function of water depletion threshold), tillage, and crop
residue management.

The effect of tillage is simulated as a function of tillage type (depth, degree of soil-layer
mixing, and perturbation) as reported in the WEPP model [30]. As reported in [22], the
mixing of two or more adjacent soil layers results in mixing of pools (either inorganic or
organic) and mixing of state variables (e.g., soil water content).

The tillage operation leads to an increase in the mineralization rate of the organic
carbon pools as it enhances the microporosity, in accordance with [31]. The soil hydrological
parameters of the water retention curve are computed daily as a function of the daily values
of bulk density and soil organic carbon [32].

The decomposition of the crop residues is simulated according to the specific decompo-
sition rate and amount of biomass that remains in the soil at the harvesting date (percentage
of the simulated biomass of the crop organs, leaves, stem, and roots).

2.4. The ARMOSA Model

To adapt the predictive algorithms of durum wheat growth implemented in ARMOSA
to the data harvested in the LTE, the adjustment of the crop coefficients was assessed
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according to a trial-and-error procedure to reflect reasonable simulations or to bring the
model output closer to the observed data. The calibration of ARMOSA was conducted
initially for nitrogen and carbon cycling and subsequently for biomass accumulation and
grain yield, using the genetic simplex method according to [33].

The selection of parameters to calibrate was performed through the screening method
of Morris as modified by [34].

Based on this sensitivity analysis, the mineralisation rates of soil organic matter
fractions (litter and stable pools), the parameter PCO2 (the potential CO2 assimilation
parameter), and GDD from emergence to flowering were calibrated separately for the cvs.
The maximization of the Nash–Sutcliffe modelling efficiency NSE [35] was chosen as the
objective function. Initially, the NSE for simulated and observed soil organic carbon (TOC)
data was maximized, followed by maximizing the NSE for observed and simulated yield
and biomass data, separately for each of the cvs.

The test benchmark for calibrating ARMOSA was T2, on which the model was primar-
ily modelled. Subsequently, fine tuning of crop parameters was further implemented to
closely align the model outputs with the collected data on biomass at harvest, yield, and
TOC dynamics in the LTE, including T5 and T8 as well as T2.

After calibrating ARMOSA, its reliability in replicating the biomass and yield at
harvest of cvs and TOC dynamic was assessed by means of appropriate evaluative indices,
as follows.

RMSD =

√
∑n
=i(Xobs,i − Xmodel,i)

2

n
(1)

where:
RMSD is the root mean square error, or the measure of the difference between values

predicted by a model and the values actually observed from the environment that is being
modelled [36];

Xobs,i is the observed value;
Xmodel,i is the forecast value.

NRMSE =
RMSE

Xobs
∗ 100 (2)

where:
NRMSE is the relative root mean square error, and it can be interpreted as a fraction of

the overall range that is typically resolved by the model [37];
Xobs is the average of the observation values.

EF = 1− ∑n
=i(Xobs,i − Xmodel,i)

2

∑n
=i
(
Xobs,i − Xobs

) (3)

where:
EF is the Nash-Sutcliffe efficiency [38], a normalized statistic that determines the

relative magnitude of the residual variance compared to the measured data variance.

d = 1− ∑n
=i(Xobs,i − Xmodel,i)

2

∑n
=i
(∣∣Xmodel,i − Xobs

∣∣+ ∣∣Xobs,iXobs
∣∣)2 (4)

where:
d is the index of agreement [39].
The index of agreement can detect additive and proportional differences in the ob-

served and simulated means and variances.

CRM = 1− ∑n
=i Xmodel,i

∑n
=i Xobs,i

(5)
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where:
CRM is the coefficient of residual mass [40], which can assume positive values indicat-

ing an underestimation of the model outcome or negative values if there is an overestima-
tion of the model output, while values close to zero indicate the absence of trends.

For each evaluation index, a score ranging between −1 (worst) and 1 (best) was
assigned, with 0.5 for the middle value.

GSD =


1 i f 25 > GSD > 0;

0.5 i f 25 < GSD < 40;
−1 i f GSD > 40.

(6)

EF =


1 i f 1.0 > EF > 0.4;
0.5 i f 0 < EF < 0.4;
−1 i f EF < 0.

(7)

d =


1 i f 1.0 > EF > 0.7;

0.5 i f 0.4 < EF < 0.7;
−1 i f d < 0.4.

(8)

CRM =


1 i f 0.01 > CRM > −0.01;
0.5 i f − 0.1 < CRM < 0.1;
−1 i f 0.1 < CRM < −0.1.

(9)

The comparison using these indices focused on specific phenological stages, including
the dates of emergence, flowering, and physiological maturity; dry biomass at harvest;
grain yield; and TOC.

To rank the aforementioned valuation indices, less stringent criteria were applied
than those reported in other modelling exercises [41,42]. Indeed, the authors of those
works performed a comparison between the observed and simulated datasets for a specific
growing season and individual cvs, which is less challenging than calibration across
multiple growing years and/or cvs.

The detailed analysis of the four evaluative indices presented a challenge in expressing
a quick and easily interpretable assessment of ARMOSA’s performance. As a result, a
conclusive evaluation based on the aggregation of scores related to individual indicators
(−1, 0.5, and 1) was implemented.

This final score reflecting the reliability of ARMOSA in replicating wheat growth
and productivity assumed the following criteria: Very good = total score from 3.5 to 4;
Good = total score from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0 to 1.

The model’s robustness, tested during the validation step, was assessed by investigat-
ing parameters of the 1:1 regression model (i.e., R2, angular coefficient (β) and significance
of the regression model) applied to the yield (averaged for each cv and soil tillage option)
and TOC of P_32.

3. Results and Discussion
3.1. Calibration

The growth and productivity of wheat showed high variability both among cvs and
across the growing seasons sown within the same cvs (Figure 1a,b).
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Figure 1. Trend of the total dry biomass (a) and grain yield (b) at the harvest of durum wheat
following one another in the growing years for P_30. Va stands for Valgerardo, Ap for Appulo, La for
Latino, Ai for Appio, Si for Simeto, Cl from Claudio, and Sa for Saragolla.

Valgerardo and Latino exhibit significant reductions in growth in certain years, ad-
versely affecting productivity. For Valgerardo, dry biomass accumulation halted in 1982,
with values ranging between 4157 kg ha−1 (T5) and 5447 kg ha−1 (T8) in 1982. The grain
yield behaved accordingly, with values well below 1000 kg ha−1 for all straw treatments.

The following year, a storm occurring just before harvest led to lodging of the plants
and resulted in grain loss. Therefore, data from this year were excluded from the reported
modelling exercise.

For Latino, dry biomass and productivity at harvest in 1992 remained below 5000 kg ha−1

and 1000 kg ha−1, respectively.
Ofanto and Appulo achieved a fair stability of growth and productivity over the grow-

ing years, with comparable values in terms of TDM (slightly higher than 10,000 kg ha−1

for both) and grain yield (around 3000 kg ha−1).
Simeto and Claudio demonstrated the highest yield potential among the cvs, as

evidenced by their high productivity in certain years (peaking over 5000 kg ha−1) compared
to the other cvs.

However, even for these two cvs, some growing seasons proved to be unfavourable
for the growth and accumulation of biomass, with limited grain yield falling below
2000 kg ha−1 for Simeto.

Ultimately, Saragolla was the cv that provided some of the highest (4508 kg ha−1 in
2021; T2) and lowest yield values (1692 kg ha−1 in 2020; T5) even if, for the worst perfor-
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mances, the corresponding TDM was not especially unfavourable (from 11,723 kg ha−1 to
13,974 kg ha−1).

As with Valgerardo, a storm shortly before harvesting heavily compromised grain har-
vesting in 2001 (cv Ofanto) and 2018 (cv Claudio for T2 and T5 treatments). Consequently,
the wheat data from these growing seasons were not considered for model parametrization.

The calibrated values achieved by trial and error for the coefficients of parameters
underlying crop growth involved the following: (i) assimilation of CO2; (ii) conversion into
biomass; (iii) separation in the various organs of the plant; (iv) development of the canopy
and intercepted radiation; (v) root length; (vi) senescence (Tables 1 and 2).

Table 1. Calibrated values of crop parameters by cultivar. Only modified values are shown in
the table.

Parameter Default
Value Cultivars

Appio Appulo Claudio Latino Ofanto Saragolla Simeto Valgerardo

SPar 12 - 14 - - 14 19 - -
EAIfactor 0.5 - - - - 0.4 - - -
LAITHmin 4 - - - - 3 - - -

MaintenanceLeaves 0.05 - - 0.01 - - 0.02 0.01 -
MaintenanceRoots 0.015 0.05 - 0.01 - - 0.01 0.01 0.03
MaintenanceStem 0.015 0.05 0.005 0.01 - - 0.01 0.01 0.09

MaintenanceStorage 0.01 0.05 0.07 0.003 - - 0.03 0.003 0.01
PARAgeDLAI 0.3 0.08 0.7 - 0.2 0.2 0.2 0.43 -
MaxCO2Net 1200 - 1500 - - - - - 1000

PCO2 0.0052 - 0.015 0.003 0.001 0.004 0.0099 0.0025 0.0009
MaxRootDepth 800 - - 900 1000 1000 - - -

SLA 0.017 - 0.005 - - - - - -
TmaxCO2 40 36 37 36 36 36 36 33 25
TOffCO2 40 - - - - - - 37 36

DeathAgeingLeavesStart 60 - - 40 40 - - - -
Acrit 0.053 0.043 0.043 - - - - - -
Amin 0.022 - - - - 0.012 - -
Amax 0.083 - - - - 0.05 - - -

KET BBCH 50 1.05 - 1.1 - - - 0.95 - 1.1
KET BBCH 78 1.05 - 1.1 - - - 0.95 - 1.1
KET BBCH 97 0.9 - 1.85 - - - 0.7 - -

In addition to these parameters, the coefficients of algorithms governing the simulation
of evapotranspiration (Table 2), specific partitions for each phenological phase (Table 2),
and degree days (GDD; Table 3) for achieving the phenological stages were also modified.

For the emergence, flowering, and maturity stages, an excellent match between the
observed and simulated data was achieved, both in terms of similarity of values averaged
for all growing seasons and in terms of inter-annual variability (Table 4).

Accurate calibration of crop phenology is considered the primary, basic step in the
application of crop simulation models [43]. In our modelling exercise, the emergence and
flowering stages of wheat, as formalized by ARMOSA, attained the highest scores, with the
latter capable of capturing both the averaged GDD to reach these phenological stages and
variability across years.

ARMOSA effectively formalized GDD to reach the maturity stage, albeit with a slight
penalty from the low score of EF and a moderate score of d. However, this process was
well depicted by NRMSE and CRM figures.
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Table 2. Calibrated values of plant partition parameters by cultivar. Only modified values are shown
in the table.

Parameter Default
Value Cultivars

Appio Appulo Claudio Latino Ofanto Saragolla Simeto Valgerardo

FDMLeaves BBCH 40 0.4 0.5 - - - - - - -
FDMLeaves BBCH 47 0.4 - - - - - - 0.3 -
FDMLeaves BBCH 58 0.4 0.3 - - - - 0.3 - -
FDMLeaves BBCH 61 0.1 0 0.3 0.3 - 0 0.2 - 0.2
FDMLeaves BBCH 75 0 - 0.2 - - - - - -

FDMStem BBCH 0 1 - 0 - - - - - -
FDMStem BBCH 40 0.6 0.5 - - - - - - 0.5
FDMStem BBCH 47 0.6 - - - - - - 0.7 0.5
FDMStem BBCH 58 0.6 0.4 - - - - - - 0.4
FDMStem BBCH 61 0 - 0.2 0.3 - - 0.6 - -
FDMStem BBCH 75 0 - 0.1 - - - 0.2 - -
FDMStem BBCH 80 0 - - - - - 0.1 - -
FDMStorage BBCH 0 0 - 1 - - - - - -
FDMStorage BBCH 40 0 - - - - - - - 0.1
FDMStorage BBCH 50 0 - - - - - - - 0.1
FDMStorage BBCH 58 0 0.3 - - - - 0.2
FDMStorage BBCH 61 0 1 0.5 0.4 0.9 1 0.1 0.9 0.8
FDMStorage BBCH 75 0.9 1 0.7 1 1 1 0.6 1 1
FDMStorage BBCH 80 0 - - - - - 0.9 - -

FDMShoot BBCH 0 0.5 - 0.3 - - - - - -
FDMShoot BBCH 9 0.5 - 0.3 - - - - - -

FDMShoot BBCH 29 0.55 - 0.5 - - - - - -
FDMShoot BBCH 56 0.9 - - - - - - 0.85 1

Table 3. Calibrated values of phenological-stage-specific parameters by cultivar. Only modified
values are showed in the table.

Parameter Default
Value Cultivars

Appio Appulo Claudio Latino Ofanto Saragolla Simeto Valgerardo

GDDsum Emergence 50 90 - 70 70 70 - 90 60
GDDsum Tillering 400 250 - 250 350 450 300 250 200

GDDsum Flowering 350 250 300 300 - - 300 - -
GDDsum Phys. maturity 600 300 220 300 250 200 300 300 350

Tbase Emergence 5 7 7 - - - - - -
Tbase Tillering 5 - 7 - - - - - -

Tbase Flowering 8 - 5 - - - - - -
Tbase Phys. maturity 8 - 6 - - 6 7 7 -

A simulation model’s accuracy in replicating crop phenology correlates with its ability
to capture the genetic variability underlying canopy development and biomass accumula-
tion within the same framework [44].

Biomass accumulation is linked to the amount of radiation intercepted by the leaf
surface, which, in turn, is responsible for converting assimilated CO2 into carbohydrates, a
cultivar-specific trait.

In light of this, the coefficients of certain algorithms governing canopy development
and senescence, CO2 conversion into dry matter, maintenance respiration, and water and
temperature stress for each cultivar were adjusted to best align with the simulation of
biomass accumulation based on data gathered in the LTE (see Table 1).
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Regarding phenology, the calibration phase demonstrated the proficiency of ARMOSA
in faithfully replicating the total dry biomass at harvest, averaged for all soil treatments
(Table 5).

Table 4. Comparison between observed and simulated data for the phenological stages recorded
for all cultivars and treatments of P_30. Observed and simulated data on phenology were equal
for all cvs. White, light grey, and grey cells indicate the best (1), middle (0.5), and worst (0) scores,
respectively.

Parameter Unit Obs Mean St.Dev. RMSD NRMSE EF d CRM Score

n◦ Obs Sim Obs Sim (GDD) (%)

Emergence GDD (◦C) 43 352 347 18 20 11 3.06 0.70 0.92 −0.01 Very good

Flowering GDD (◦C) 43 129 131 8 10 9 6.82 0.21 0.74 0.01 Very good

Maturity GDD (◦C) 43 158 157 9 8 9 6.01 −0.36 0.62 0.00 Good

Very good = total score from 3.5 to 4; Good = total score from 2.5 to 3.

Table 5. Comparison between simulated and observed data on total dry biomass and performance
evaluation indices of the model applied to straw treatments. White and light grey, indicate the best
(1) and middle (0.5) scores, respectively.

Parameter Unit Obs Mean St.Dev. RMSD NRMSE EF d CRM Score

Treatment n◦ Obs Sim Obs Sim (kg ha−1) (%)

T2 kg ha−1 36 10,835 10,475 ±4005 ±3076 2916 26.91 0.45 0.81 0.03 Very good

T5 kg ha−1 36 10,824 11,509 ±3884 ±4303 2877 26.58 0.44 0.86 −0.06 Good

T8 kg ha−1 37 11,124 11,873 ±3696 ±4163 2653 23.85 0.47 0.87 −0.07 Very good

P_30 kg ha−1 109 10,930 11,291 ±3829 ±3898 2816 25.77 0.45 0.85 −0.03 Very good

Very good = total score from 3.5 to 4; Good = total score from 2.5 to 3.

Indeed, the highest score was observed for three out of four evaluation indices, with
only a negligible deviation of NRMSE from the optimal value (25.77% vs. 25%).

When evaluating ARMOSA’s response for each cropping system separately (T2, T5,
and T8), a remarkable match between observed TDM and the model output was evident
for T2 and T8. There was a narrow deviation from the optimal value of NRMSE for the
former and a slight overestimation of the model for the latter. Nonetheless, even the output
of ARMOSA in replicating T5 could be deemed satisfactory, with the best performance for
EF and d, but with a slight overestimation and deviation of the simulated data compared
to the observed data.

The environment of the area under investigation (Mediterranean climate) is character-
ized by erratic rainfall patterns, leading to prolonged drought conditions, especially during
the spring–summer period.

Additionally, common agronomic practices for durum wheat in the Mediterranean area
do not include irrigation. The sum of these conditions subjects the crop to extremely variable
water supply and water stress among years and within the same growing season [45–47].

Examining the ratio between the standard deviation and the mean value of TDM
revealed that certain cvs were more susceptible to climatic erraticism (e.g., Valgerardo,
Latino, Appio) than others (Ofanto and Appulo; Table 6).
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Table 6. Comparison between simulated and observed data on total dry biomass and performance
evaluation indices of the model applied to individual cultivars. White, light grey, and grey cells
indicate the best (1), middle (0.5), and worst (0) scores, respectively.

Parameter Unit Obs Mean St.Dev. RMSD NRMSE EF d CRM Score

cv N◦ Obs Sim Obs Sim (kg ha−1) (%)

Appio kg ha−1 12 9148 8713 ±2377 ±939 2473 27.03 −0.18 0.39 0.05 Fair

Appulo kg ha−1 12 10,346 10,706 ±1473 ±667 1625 15.18 −0.33 0.32 −0.03 Fair

Claudio kg ha−1 13 15,911 14,709 ±3792 ±3948 3368 21.17 0.15 0.79 0.08 Good

Latino kg ha−1 15 7393 8953 ±2607 ±2546 2250 30.43 0.20 0.81 −0.21 Fair

Ofanto kg ha−1 12 10,981 11,340 ±827 ±2320 2318 21.11 −7.58 0.41 −0.03 Good

Saragolla kg ha−1 9 15,517 17,035 ±3207 ±5599 6427 41.42 −3.52 0.40 −0.12 Bad

Simeto kg ha−1 24 11,346 11,808 ±2834 ±2200 1971 17.37 0.50 0.83 −0.06 Very good

Valgerardo kg ha−1 12 7411 7045 ±2187 ±1953 737 9.94 0.88 0.97 0.05 Very good

Very good = total score from 3.5 to 4; Good = total score from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total
score from 0 to 1.

The variability observed in the experimental yield data was influenced by climatic
variables, including rainfall, which exhibited high variability with differences of up to
400 mm across growing seasons, and temperature (especially during the flowering and
grain-filling period).

Lower yields were recorded in years with lower precipitation during the crop growing
period (around 300 mm in 1982 and 1992). The best performances were noted in growing
seasons where precipitation ensured water inputs exceeding 430 mm, particularly in 1991,
1998, and several years ranging from 2018 to 2021.

Detrimental effects of temperatures on productivity were observed in years when
grain yield was not satisfactory (i.e., 1989, 1995, 2007, and 2020). In these instances, average
mean temperatures reached peaks of 24–28 ◦C between the beginning of flowering and the
waxy maturity stage of the seed (mid-April to the second ten days of May), mainly due to
anomalies in maximum temperatures (heatwaves) leading to pollination failure and/or
reductions in grain mass.

Accordingly, a meticulous calibration of the crop coefficients related to the mechanisms
of adaptation to temperature and rainfall pattern and any water/temperature stress (i.e.,
WSPar, or susceptibility of the crop to water stress; TmaxCO2, or the maximum temperature
threshold for the optimal development of the crop; TOffCO2, that is, the temperature above
which crop growth ceases; and KET, which represents the crop coefficient at specific
phenological stages of the crop) was performed for each cv.

Among 8 cvs, ARMOSA was able to accurately replicate TDM at the end of growing
season for 4 of them and produced fairly good replications for 3 cvs; there was only one cv
for which the simulation was not satisfactory.

It should be noted that for Saragolla, we investigated only three growing seasons
(from 2019 to 2021), leading to a limited number of observations not sufficient to optimize
ARMOSA’s response for this cv.

Simeto and Valgerardo were the cvs for which ARMOSA accurately simulated both
the inter-annual variability and the average TDM observed in the field, with a slight
overestimation for Simeto.

For the remaining cvs, there was a mixed response; for some of them, ARMOSA
was efficient in replicating the biomass accumulation at harvest, returning negligible
differences between the observed and simulated mean data, but less effective in capturing
the variability between the various years (see NRMSE, EF, and d for Appulo, Claudio,
and Ofanto).

For other cvs, the simulations comprehensively captured the inter-annual variability
(i.e., Claudio and Latino) but overestimated or underestimated the average trend of TDM.
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Definitively, by analysing the response of ARMOSA in simulating TDM at harvest,
it emerged that the calibration process correctly trained the cropping-system model to
effectively replicate the data observed in the field across the LTE under P_30 treatments.

Thus, the correct estimate of TDM by ARMOSA and therefore of biomass incorporated
in the soil was the first key point for an adequate simulation of TOC dynamics.

In previous studies, ARMOSA was calibrated and validated on a wide range of climate
and soil conditions throughout Europe under conventional systems and CA, simulating
TOC dynamics with very good or even excellent results [22].

Thus, the calibration step for the TOC dynamic focused only on two parameters
controlling the evolution of soil organic matter, namely Khumus (1.4 × 10−4) and CMicrob-
Efficiency (0.4), leaving all the other parameters unchanged.

ARMOSA replicated the dynamics of TOC quite favourably, achieving the “Good”
score for all the treatments under investigation (Table 7; Figure 2). This result was attributed
to the accurate estimation of the mean value of TOC (averaged for all treatments; 64,965 vs.
64,758 kg ha−1, Table 7).

Table 7. Comparison between simulated and observed data on TOC (0–40 cm) for P_30 and perfor-
mance evaluation indices of the model applied to each treatment. White, light grey, and grey cells
indicate the best (1), middle (0.5), and worst (0) scores, respectively.

Parameter Unit Obs Mean Dev.st RMSD NRMSE EF d CRM Score

Treatment N◦ Obs Sim Obs Sim (kg ha−1) (%)

T2 kg ha−1 8 66,345 64,549 ±5738 ±4279 6371 9.60 −0.41 0.50 0.03 Good

T5 kg ha−1 13 64,313 65,060 ±5700 ±4390 6071 9.44 −0.23 0.57 −0.01 Good

T8 kg ha−1 13 64,226 65,127 ±5517 ±3373 5780 9.00 −0.19 0.36 −0.01 Good

P_30 kg ha−1 34 64,758 64,965 ±5537 ±3883 6035 9.32 −0.22 0.48 0.00 Good

Good = total score from 2.5 to 3.
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While the CRM index indicated a perfect alignment of the simulated values with the
measured ones, it is noteworthy that ARMOSA tended to slightly underestimate the data
collected in the initial course of the LTE and then overestimate the data in the middle period
of the LTE (Figure 2).
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Measuring the robustness of ARMOSA in formalizing TOC dynamics in the last part
of the LTE was not possible due to the absence of soil sampling, which occurred during the
validation phase (as discussed in the next section).

The high variability of measured TOC, both between consecutive years and within the
same sampling (indicated by a high standard deviation), was highlighted (Figure 2).

The source of this erraticism may be a series of conditions associated with the sampling
time and sampling point. The sampling dates over the years ranged from the beginning of
September to the end of November. During this period, straw could be intact (i.e., early
September) or already partially degraded (i.e., late November), a state also related to the
time of their burial with respect to the soil sampling. This could affect the amounts of
organic matter and organic carbon in the shallow layers of soil as well as the sampling point,
which could be affected by the substantial content (and dynamics) of crop residues [22–48].

This might explain the diminished correspondence between the measured and sim-
ulated variability of TOC (indicated by low EF and d scores). Nevertheless, ARMOSA
successfully captured the high variability of this variable between the beginning and end
of the growing period, attributed to the dynamic degradation of straw.

Divergent results emerged from the simulation of grain yield (refer to Table 8).

Table 8. Comparison between simulated and observed data on grain yield at harvest for P_30 and
performance evaluation indices of the model applied to each treatment. White, light grey, and grey
cells indicate the best (1), middle (0.5), and worst (0) scores, respectively.

Parameter Unit Obs Mean Dev.st RMSD NRMSE EF d CRM Score

N◦ Obs Sim Obs Sim (kg ha−1) (%)

T2 kg ha−1 40 3074 2832 ±1214 ±1382 1175 38.22 0.04 0.78 0.08 Good

T5 kg ha−1 40 2735 3114 ±1206 ±1549 1413 51.66 −0.41 0.69 −0.13 Bad

T8 kg ha−1 41 2902 3265 ±1116 ±1509 1411 48.62 −0.63 0.66 −0.13 Bad

Total kg ha−1 121 2904 3072 ±1178 ±1481 1338 46.07 −0.30 0.71 −0.06 Fair

Good = total score from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0 to 1.

Although the simulated total score of yield averaged for all treatments was “Fair”,
only for T2 was a good result achieved, while, for the other two treatments, the outcome
was not adequate.

This pattern was consequently confirmed for the simulated yield of several cultivars.
Among the eight cultivars, half did not attain a satisfactory score, three achieved a fairly
good score, and only one reached the maximum score (see Table 9). NRMSE ranged from a
minimum of 24.45% for Latino to a maximum of 66.51% for Claudio. The latter had a poor
fit in the calibration test with EF (−9.93) and CRM (−0.23), which were the worst among
the simulated varieties. In addition to Latino, the calibration of Simeto allowed satisfactory
performance in terms of EF (0.1) and d (0.77), followed by Valgerardo (0.18 and 0.83 for EF
and d, respectively).
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Table 9. Comparison between simulated and observed data on grain yield and performance evalua-
tion indices of the model applied to individual cultivars. White, light grey, and grey cells indicate the
best (1), middle (0.5), and worst (0) scores, respectively.

Parameter Unit Obs Mean Dev.st RMSD NRMSE EF d CRM Score

N◦ Obs Sim Obs Sim (kg ha−1) (%)

Appio kg ha−1 12 2325 2361 ±1031 ±393 1239 53.3 −0.58 0.1 −0.02 Bad

Appulo kg ha−1 12 2903 3114 ±306 ±353 1564 19.39 −2.72 0.23 −0.06 Fair

Claudio kg ha−1 13 3754 4618 ±786 ±2624 2497 66.51 −9.93 0.37 −0.23 Bad

Latino kg ha−1 15 2135 2029 ±1093 ±912 524 24.54 0.71 0.92 0.05 Very good

Ofanto kg ha−1 15 3092 2641 ±437 ±989 1066 34.47 −5.38 0.42 0.15 Bad

Saragolla kg ha−1 9 3049 2966 ±1293 ±1091 2095 68.71 −1.96 0.06 0.03 Bad

Simeto kg ha−1 33 3477 3818 ±1274 ±1292 1190 34.22 0.1 0.77 −0.10 Fair

Valgerardo kg ha−1 12 1600 1973 ±817 ±1044 708 44.25 0.18 0.83 −0.23 Fair

Very good = total score from 3.5 to 4; Fair = total score from 1.5 to 2; Bad = total score from 0 to 1.

The unsatisfactory outcome for Saragolla should also be highlighted, as EF and d
deviated significantly from the optimum values, despite the simulation of the mean yield
aligning with observed data (CRM of 0.03).

Calibration of ARMOSA was focused on the parameters controlling the partition of the
biomass between the different organs, therefore reflecting the grain and the maintenance
respiration of the same (Table 2).

The observed data showed that the grain yield was not linearly related to the biomass
produced at harvest.

Several authors reported poor performance when calibrating crop simulation models on
wheat yield across different sites, years, and cultivars, especially in hot–arid environments.

Specifically, some authors claimed that grain production depended on genetic coeffi-
cients that were not only site-specific [49] but also year-specific [50,51].

Our results after the calibration of ARMOSA confirm what was reported by [52], who
stated that it was difficult to accurately predict the production of wheat with low levels
and/or in environments characterized by high temperatures.

The simulation of grain production becomes challenging when situations of water
and/or thermal stress occur during seed formation [53].

In the climatic conditions of the experimental site, recurrent periods of low rainfall and
heat waves significantly compromised the potential productivity of the crop. Additionally,
the occurrence of short but intense storms and strong gusts of wind resulted in lodging
of the crop. These extreme events during seed filling, which significantly impact the final
yield, are rarely formalized by crop growth simulation models [54].

Nevertheless, the 1:1 regression line depicting observed and simulated data (Figure 3)
demonstrated the commendable fitness of ARMOSA in capturing the variability of the
average grain yield among cultivars (Table 8), evidenced by an R2 value of 0.82 and an
angular coefficient of 1.06.

The calibration procedure involved an intricate adjustment of parameters underly-
ing crop growth, encompassing CO2 assimilation, biomass conversion, organ separation,
canopy development, intercepted radiation, root length, and senescence. Phenological
stages, including emergence, flowering, and maturity, achieved an excellent match be-
tween observed and simulated data, underscoring the importance of accurate calibration in
capturing genetic variability.
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Figure 3. Linear regression (thin line) between observed grain yield (Obs_yield) and simulated grain
yield (Sim_yield) of P_30. Empty circles indicate the yield averaged for each cultivar. Thin black line
indicates 1:1 fit.

Beyond phenology, the calibration phase scrutinized biomass accumulation and
cultivar-specific adaptation to environmental stressors. Different cultivars exhibited vary-
ing susceptibility to climatic erraticism, necessitating meticulous calibration of crop coeffi-
cients related to temperature, rainfall patterns, and water/temperature stress. ARMOSA
demonstrated varying success in replicating total dry biomass at the end of the growing
season for different cultivars, reflecting the intricacies of cultivar-specific responses to
environmental variations.

The simulation of grain yield emerged as a challenging aspect, with ARMOSA demon-
strating a tendency to slightly overestimate yields and exhibiting broader sensitivity to
climate patterns than the actual plant dynamics. The nonlinear relationship between grain
yield and biomass produced at harvest added an extra layer of complexity to the calibration
process. Despite these challenges, ARMOSA presented a commendable ability to capture
the variability of average grain yield among cultivars, demonstrating the model’s aptitude
in predicting wheat productivity under diverse conditions.

3.2. Validation

ARMOSA’s performance in simulating phenology remained consistent during valida-
tion, achieving maximum scores for emergence and flowering.

While the formalization of maturity stage did not attain the same degree of excellence
(EF of −1.05 and CRM of 0.46), ARMOSA closely aligned with the observed mean values
(156 days vs. 155 days; Table 10).

Table 10. Comparison between observed and simulated data for the phenological stages recorded for
all cultivars and treatments of P_32 in the validation step. Observed and simulated data on phenology
were equal for all cvs. White, light grey, and grey cells indicate the best (1), middle (0.5), and worst
(0) scores, respectively.

Parameter Unit Obs Mean Dev.st RMSD NRMSE EF d CRM Score

n◦ Obs Sim Obs Sim (GDD) (%)

Emergence GDD 14 365 368 27 35 13 3.56 0.74 0.95 −0.01 Very good

Flowering GDD 14 123 128 7 11 10 8.13 −1.11 0.63 −0.04 Very good

Maturity GDD 14 155 156 6 7 9 5.81 −1.05 0.46 −0.01 Good

Very good = total score from 3.5 to 4; Good = total score from 2.5 to 3.
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Indication on the reliability of ARMOSA in replicating the productivity of the cvs
(Simeto, Claudio, and Saragolla) throughout the validation process were drawn from the
results of the 1:1 regression (Table 11).

Table 11. Comparison between observed and simulated data on grain yield in the validation step
and main parameters of the related linear regression.

Parameter Unit Obs Mean Dev.st R-Squared p-Val (Fit) β p-Val (β)
n◦ Obs Sim Obs Sim

Simeto kg ha−1 8 3267 4416 ±957 ±720 0.87 <0.001 1.24 <0.001
Claudio kg ha−1 7 4300 4392 ±617 ±2027 0.86 <0.001 1.02 <0.001

Saragolla kg ha−1 2 3089 2867 ±656 ±402 0.99 <0.001 0.92 <0.001
NT kg ha−1 17 3703 4202 ±953 ±1481 0.86 <0.001 1.08 <0.001
MT kg ha−1 17 3684 4246 ±963 ±1478 0.87 <0.001 1.11 <0.001

P_32 kg ha−1 34 3676 4224 ±944 ±1457 0.87 <0.001 1.1 <0.001

The average value of the grain yield of Claudio was aligned between the model output
and the observed data (4300 kg ha−1 vs. 4392 kg ha−1). Although the standard deviation
was much higher in ARMOSA than in the LTE data, the model reasonably captured the
observed variability among years (see dispersion around the 1:1 regression line). What
turned out to be off scale were the outcomes related to a single growing season for NT and
MT, in which the simulated values (8154 kg ha−1, as mean) were much higher than the
observed productivity (4565 kg ha−1).

For Saragolla, ARMOSA was inclined to slightly underestimate the actual yield
(β = 0.92), but with an excellent fit between simulated and observed data (R2 = 0.99),
even if the compared growing seasons numbered only two for a total of four yield produc-
tivity figures.

For Simeto, the overestimation of grain production by ARMOSA was around 24%
(3267 kg ha−1 vs. 4416 kg ha−1). As for Claudio, a very high inconsistency between the
output and the actual grain yield was observed for one growing season (2349 kg ha−1

vs. 5919 kg ha−1 as mean), but Simeto definitively proved to be the most difficult cv for
ARMOSA to predict (although not dramatically) in the validation phase.

Evaluating ARMOSA overall for NT and MT treatments, the tendency of the model to
slightly overestimate (+10%) the observed grain productivity was highlighted, to which
was added the larger variability generated by the model, as computed by the coefficient of
variation (ratio between the standard deviation and the mean), which was approximately
35% for ARMOSA and 26% for the LTE.

Examining ARMOSA’s overall performance for different treatments highlighted a ten-
dency to slightly overestimate yield (+10%), coupled with increased variability compared
to observed plant dynamics (CV, defined as the ratio of the standard deviation to the mean
equal to 34% for ARMOSA and 26% for the LTE).

Testing the response of ARMOSA in formalizing TOC (Figure 4b), it emerged how the
model responded differently to the two soil treatments (NT and MT) and how the outputs
aligned with what was observed during the LTE.
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black line indicates 1:1 fit. TOC (0–40 cm) dynamics of observed (obs) and simulated (sim) NT and
MT verified across experimental years of LTE (b).

Indeed, in the LTE, TOC went from about 51,000 kg ha−1 at the beginning of the
experimental test (2002) to 63,200 kg ha−1 in NT and 55,800 kg ha−1 in MT, respectively,
in 2020.

ARMOSA did not go far from the observed data, returning TOC values of 63,045 kg ha−1

and 65,247 kg ha−1 for NT and MT, respectively, for 2020.
This contrasts with the results of comparing the simulated and observed data for some

of the several experimental years (i.e., 2015 and 2019), in which substantial differences were
recorded between ARMOSA outputs and actual soil TOC content.

This is because TOC determined by laboratory analysis is strongly affected by the
organic substances deriving from the total or partial degradation of crop residues, the
content of which can be extremely variable depending on the sampling point [48].

This also explains the extreme variability of the figures (see standard deviation in
Figure 4b) observed for each sampling, both in NT and in MT.

Concerning TOC, what has been achieved represents a judicious compromise between
the performances obtained in the calibration and validation steps, as optimizing one phase



Agronomy 2024, 14, 164 18 of 22

over the other would have diminished the overall modelling capacity of the model with
respect to TOC.

The TOC pattern in MT, though showing an increase, suggests a more moderate
impact on carbon sequestration than NT. Some soil disturbance in MT may accelerate
decomposition, but the overall effect remained positive for organic carbon accumulation.
This resulted in an annual increase in TOC ranging from 114 kg ha−1 to 290 kg ha−1

when simulating CA practices such as NT and MT. Similar findings were also indicated
by other long-term modelling exercises with ARMOSA [22], where, under current climatic
conditions, the TOC increase reached up to 320 kg ha−1.

Although simulations for all T2, T5, and T8 options resulted in an increase in TOC over
the course of the wheat monocropping, the latter two showed slightly better performance
than T2 during the steady-state phase.

The limited positive impact of water and nitrogen additions to straw on the dynamics
of TOC accumulation in T5 and T8, as indicated by ARMOSA simulations, may be ascribable
to the timing of water and nitrogen supply.

In the simulations, mirroring the experimental conditions, mineral nitrogen and water
were applied during the summer period, characterized in the study environment by very
high daytime temperatures (up to 40 ◦C). These conditions promoted water evaporation
and reduced the activity of microorganisms involved in the mineralization of organic matter
(with a correlated reduction in nitrogen supply), thus mitigating a more disruptive effect
on TOC accumulation in the soil.

The better TOC dynamics (even if not dramatic) in T5 and T8, according to ARMOSA
simulations, favoured a slightly higher yield performance than T2.

This indicates that soil health, using soil organic carbon as an indicator, also promotes
an improvement in crop productivity. This is due to a more gradual release and increased
availability of nitrogen from the soil to the crop. Following ARMOSA’s recommendations,
the surface release of straw (NT) or shallow burial (MT), without prior chopping, favoured
higher grain yield. This was associated with the mulching effect of residues on the soil,
leading to a reduction in water loss through evaporation.

ARMOSA’s performance in simulating phenology remained consistent during vali-
dation, achieving maximum scores for emergence and flowering. While the formalization
of the maturity stage did not attain the same degree of excellence, ARMOSA closely
aligned with the observed mean values. This reinforced the model’s reliability in capturing
critical phenological events, crucial for understanding crop development and predicting
growth patterns.

Examining ARMOSA’s overall performance for different treatments highlighted a
tendency to slightly overestimate yield, coupled with increased variability compared to
observed plant dynamics. The model’s broader sensitivity to varying climate patterns was
evident, indicating areas for potential refinement in predicting crop performance under
diverse conditions.

The simulation of TOC dynamics during validation underscored ARMOSA’s ability to
capture fluctuations, particularly during long-term evolution under different crop systems.
The model closely aligned with observed TOC values for the year 2020 but exhibited
discrepancies in certain experimental years.

The observed variability, attributed to challenges in consistently collecting soil samples
under identical conditions, during the same period, and at the same sampling points across
different experimental years, underscores the difficulties in accurately simulating TOC
by ARMOSA.

In light of that, ARMOSA can be considered reliable in the simulation of TOC fluctua-
tion, particularly if one considers the evolution over a period long enough to capture the
correct dynamics of TOC under different crop systems [15–55].

This ARMOSA study, with a primary focus on its application in the Mediterranean
environment, establishes a robust foundation for comprehending crop dynamics and soil
processes. While the specific regional context is integral, the findings carry substantial
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implications for global agriculture. The model’s adaptability and reliability, validated
through successful calibration in the Mediterranean, suggest its potential utility across
diverse climates and agricultural systems.

Beyond the Mediterranean scope, the study provides extensive insights into crop
responses under various conditions and agronomic practices. As it accurately simulates
crop- and soil-related variables, ARMOSA emerged as a versatile tool that can be fine-
tuned to suit the unique conditions of various regions, making it valuable for researchers,
agronomists, and policymakers involved in optimizing crop growth across different en-
vironments. A noteworthy aspect is the model’s detailed impact analysis of soil organic
carbon dynamics due to agronomic practices, amplifying its applicability, particularly in
regions striving to enhance soil fertility, water retention, and overall ecosystem resilience.

As it accurately simulates crop- and soil-related variables, ARMOSA emerged as a
versatile tool that can be fine-tuned to suit the unique conditions of various regions, making
it valuable for researchers, agronomists, and policymakers involved in optimizing crop
growth across different environments.

4. Conclusions

In this modelling application, the ARMOSA crop growth simulation model underwent
rigorous testing to assess its reliability in replicating key variables of durum wheat growth,
including phenology, dry biomass accumulation, and grain yield. The crop was cultivated
under five distinct soil and straw management scenarios, with a focus on their implications
for TOC dynamics.

The calibration of ARMOSA, performed on eight durum wheat phenotypes, yielded
favourable outcomes for phenology and biomass at harvest across most investigated
cultivars. However, the simulation of grain yield presented varying degrees of success, with
some cultivars being replicated effectively, while others exhibited unsatisfactory results.
During the subsequent validation phase, ARMOSA demonstrated a reasonable ability
to capture the average grain yield across multiple growing seasons, despite occasional
deviations in specific years.

Replicating productivity in hot–arid environments with low grain yields emerged as
a challenging aspect of applying simulation models, aligning with previous findings in
the field.

In terms of TOC dynamics, ARMOSA demonstrated proficiency in replicating the
overall trend of soil organic carbon both in the calibration and validation processes. While
challenges existed in precisely capturing year-to-year variability (attributable to the inherent
spatial variability of this parameter), ARMOSA effectively mirrored the progression of TOC
over the considered timeframe within the LTE.

While improvements are desirable to enhance the model’s response to heat waves and
prolonged drought effects on final grain yield, the study’s global relevance is noteworthy.
Definitively, while the study’s focus is on a Mediterranean environment, its findings
carry broader significance globally. ARMOSA’s adaptability, demonstrated in replicating
wheat growth and TOC dynamics, suggests potential applicability in different regions and
agronomic practices. The resulting insights into crop response under varying conditions
contribute to a broader understanding of sustainable agriculture. Regarding the research’s
global relevance, the findings may guide crop modelling efforts and inform agronomic
strategies in different climates, fostering sustainable practices worldwide.
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