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A B S T R A C T   

Zero tillage (ZT), an important component of Conservation Agriculture, has enormous potential to curb emissions 
from residue burning, increase soil organic carbon and water retention, reduce land preparation costs and in-
crease the long-term productivity and profitability of the farming system. Despite the promise of ZT, little is 
known about how widely it has been adopted at regional scales in smallholder systems, where management is 
heterogeneous. Identifying ZT diffusion patterns across space and time along with other popular tillage tech-
nologies, such as conventional tillage (CT) and shallow tillage (ST), helps to target and disseminate the most 
effective technologies and estimate their climate change mitigation potential. Acknowledging the complexities 
involved in distinguishing ZT from CT and ST in smallholder fields, this study utilized an innovative two-step 
change detection method leveraging early-season Sentinel-2 multi-spectral imagery. We developed and 
applied our model in the Indian state of Punjab over three years (2020–2022). Our method outperformed 
traditional binary classification models, achieving 81 % accuracy. The analysis indicated that areas under 
different tillage types changed over time across Punjab. Specifically, from 2020 to 2021, we found a 33 % and 4 
% decrease in ZT and CT, respectively. However, a 29 % increase is observed in CT adoption. On the other hand, 
from 2021 to 2022, the adoption rates for ZT and CT increased by 18 % and 2 %, respectively, while ST adoption 
decreased by 12 %. Overall, this study demonstrates the potential use of early season Sentinel-2 imagery to map 
the adoption of tillage practices in smallholder systems. Our approach can provide large-scale information on 
technology uptake, aiding policies to implement carbon markets and the scaling up of sustainable agricultural 
practices in India.   

1. Introduction 

Conservation Agriculture (CA) constitutes a set of principles and 
practices that maintain soil structure and fertility while improving yield 
and profits (El-Shater et al., 2020) and is promoted by the United Na-
tions Food and Agriculture Organization (FAO) and various other in-
ternational development organizations. Zero tillage (ZT) involves field 
preparation with minimal soil disturbance, often by directly planting 
seeds in residues retained from the previous crop harvest (Kassam et al., 
2009; Chabert and Sarthou, 2020). While ZT is widely adopted in many 
developed countries, its implementation is limited in developing na-
tions, even though it has been shown to have advantages over conven-
tional practices (Stewart et al., 2008; Krishna et al., 2022). While ZT use 

is increasing in many agricultural systems worldwide, there is a lack of 
knowledge regarding the scale of its adoption at the regional and na-
tional levels (Krishna et al., 2022). This gap is especially pronounced in 
smallholder farming systems like those in India, where information 
about tillage practices is often unavailable through ground or census 
data (Jat et al., 2020). 

Historically, information about tillage use has been collected 
through survey-based methods, yet doing so is expensive and time- 
consuming, making it impractical to use across large areas (Watts 
et al., 2011; Azzari et al., 2019; Kubitza et al., 2020). Satellite-based 
tillage mapping has been proposed as a way to produce large-scale 
tillage data, at the field scale, and annually (Lal, 2005; Watts et al., 
2011; Azzari et al., 2019; Kubitza et al., 2020; Zhou et al., 2021). 
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Previous studies have used satellite data to classify tillage practices and 
also the percent of crop residue cover (CRC) (Luotamo et al., 2022; 
Hively et al., 2018; Ding et al., 2020; Gao et al., 2022). Many of these 
studies have found that CRC can be detected with optical reflectance, 
with some studies emphasizing the significance of the shortwave- 
infrared (SWIR) spectrum (ranging from 2100 to 2400 nm) in dis-
tinguishing crop residues from soil background soils (Daughtry et al., 
2004; Daughtry et al., 2006; Bricklemyer et al., 2006; Azzari et al., 2019; 
Sharma et al., 2016). 

Previous studies that have conducted satellite-based mapping of 
tillage practices have predominantly used Landsat satellite data (Azzari 
et al., 2019; Zheng et al., 2012). Though Landsat can be used for map-
ping cultivation techniques in regions characterized by large fields, such 
as in the United States, it may not be adequate for mapping individual 
fields in smallholder systems due to its coarse spatial resolution of 30 m 
(Zheng et al., 2013; Jain et al., 2016; Azzari et al., 2019; Sharma et al., 
2016). Recent high spatial-resolution satellite retrievals, such as those 
from Sentinel-2 (10 m), can potentially improve tillage mapping in 
smallholder fields. Tillage classification can be improved using high- 
resolution data, which reduces the chance of mixed pixels (Watts 
et al., 2011). Furthermore, three red-edge bands of Sentinel-2 can 
improve agricultural land cover classification accuracies (Immitzer 
et al., 2016; Xie et al., 2019; Zhou et al., 2021). However, only a few 
studies have mapped CRC using Sentinel-2 data, and fewer have clas-
sified tillage practices using Sentinel-2 data (Ding et al., 2020; Zhou 
et al., 2021; Liu et al., 2022). Those that have used Sentinel-2 data to 
classify smallholder tillage adoption have done so to classify only binary 
categories, ZT and conventional tillage (CT), missing alternative tillage 
practices, such as shallow tillage (ST), that are prevalent in smallholder 
systems (Zhou et al., 2021; Liu et al., 2022). 

Multi-temporal satellite imagery is advantageous for delineating 
agricultural features (Daughtry et al., 2005; Serbin et al., 2009; Zheng 
et al., 2012; Zheng et al., 2014). Previous studies have highlighted the 
importance of image acquisition time for classifying tillage adoption, 
particularly imagery early in the growing season (Quemada et al., 2018; 
Azzari et al., 2019; Hively et al., 2018; Kubitza et al., 2020; Zhou et al., 
2021; Gao et al., 2022). However, satellite imagery before the start of 
the growing season can also be important for classifying tillage prac-
tices, as ZT and CT fields differ in their crop residue management. In ZT 
fields, crop residues can be retained, while in CT fields, the residues are 
removed or burned. In particular, such differences can be detected best 
during the period when the prior crop is harvested through the end of 
sowing of the crop for which the tillage practice is being classified (Lewis 
et al., 2006; Zhou et al., 2021). In addition, by using early-season im-
agery, tillage maps could be produced at the start of the growing season, 
providing reliable and timely within-season information about adoption 
to policymakers and stakeholders. 

In this study, we focus on ZT mapping in India using Sentinel-2 
satellite data, Google Earth Engine (GEE), and a random forest classi-
fier for three years (2020–2022). Our study addresses the complex issue 
of classifying diverse tillage practices adopted in a heterogeneous 
smallholder system, Punjab, India, using a novel modified change 
detection approach and early season imagery. Specifically, we assess the 
accuracy of classifying ZT, CT, and ST (which is performed using a 
tillage machine called the Super Seeder) across the state and in multiple 
years. This study is important because it provides the first classification 
of multiple tillage types, including ST, in smallholder systems and in-
vestigates the efficacy of generating precise classification models with 
minimal training data. As an outcome of our study, we develop a cost- 
effective remote sensing-based approach that can be useful for re-
searchers and policymakers in tracking the adoption of ZT over large 
spatiotemporal scales. Such information is crucial to better understand 
the effectiveness of different policies and interventions that have been 
conducted to increase ZT adoption and to estimate associated carbon 
mitigation. 

2. Materials and methods 

2.1. Study region and characteristics 

Being the largest wheat and rice-producing state in India, we have 
chosen the entire state of Punjab for our case study. Punjab (central 
latitude/longitude: 31.1471◦N/75.3412◦E) is recognized for its signifi-
cant contribution to the country’s annual agricultural output, with 
wheat (10 million tons), rice (11 million tons), sugarcane (2 million 
tons), and cotton (1 million tons) being the major crops grown (Agri-
cultural Statistics at Glance, 2021). Fig. 1 details the extent of the study 
area, sample district, village and field locations where ground truth data 
were collected, and field images. Punjab’s agro-climate is characterized 
by a semi-arid environment with hot summers and dry cold winters, 
where most of its rainfall occurs during the monsoon season, from July 
to September. The state’s soil type is predominantly alluvial, well-suited 
for agriculture, and highly fertile. Nearly 98 % of cultivable land in 
Punjab is under irrigation, including canal irrigation, tube wells, and 
drip irrigation, supported by a well-developed irrigation system that 
promotes crop cultivation throughout the year. Typically, rice is grown 
during the monsoon season (from June to September), and wheat is 
grown during the winter season (from November to April). 

Since early 2000, the state government of Punjab has been promot-
ing the widespread adoption of ZT for wheat and rice production by 

Fig. 1. (a) Study area, state of Punjab, location in reference to India. (b) Study 
area with locations of sample villages selected for ground truth survey. (c) 
Ground truth sample plots overlaid on high-resolution satellite images for 
November 2022 in Google Earth and (d) showing the field conditions of 
respective tillage adoption observed during the survey. (2 column image). 
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providing various subsidies and innovations, resulting in 0.41 Million 
Hectares (Mha) under ZT by 2006 (Tiwari et al., 2010). However, 
despite the government’s initiatives to popularise ZT, many surveys 
suggest that most farmers still prefer to use conventional tillage 
methods, although ST is gaining in popularity. ST is practised using the 
Super Seeder machine, which incorporates rice residues into the soil in a 
single tractor pass, concurrently ensuring a finely prepared seedbed and 
the sowing of wheat, which makes the process less tillage-intensive than 
CT (Singh et al., 2023). CT is much easier to adopt compared to ST and 
ZT, with readily available machinery and inexpensive residue removal 
options, primarily through burning (El-Shater et al., 2016). We focus on 
mapping tillage practices adopted when planting the winter crop, 
wheat, as this is the crop that has the largest area under ZT or ST in 
Punjab. 

2.2. Ground truth data 

We conducted the field survey and collected ground truth data after 
the monsoon harvest. A key informant survey was carried out in 2022 
from a total of 122 villages from eight districts of Punjab to examine the 
aggregate adoption levels of different tillage practices in the sample 
villages. The selection of villages was conducted in two stages. In 2018, 
52 villages were initially selected from four districts (Fatehgarh Sahib, 
Ludhiana, Patiala, and Sangrur) based on the presence of at least one 
Happy Seeder (HS) user. Subsequently, an additional 70 villages were 
randomly added to the sample from another four wheat-growing dis-
tricts (Bernala, Jalandhar, Moga, and Shahid Bhagat Singh Nagar) in the 
2022 survey. From each selected village, one expert farmer participated 
in the key informant survey, providing insights on various aspects such 
as village characteristics, cropping patterns, technology adoption de-
tails, residue management strategies, groundwater availability, different 
soil types, and other resource conservation practices followed by 
farmers in the village. The technology adoption details included infor-
mation about monsoon crop harvesting dates, winter crop sowing dates, 
and tillage practices, specifically the area under CT, ZT, or ST. 

We also collected georeferenced plots of different tillage types from 
these villages that we could use to train and validate our remote sensing 
algorithm. We employed stratified sampling to collect plots with CT, ZT, 
and ST, sampling three to four plots from each of the 122 villages, 
totalling 426 plots. Three trained enumerators recorded the tillage type 
based on visual inspection of the field and took photographs of the field 
in case they needed additional input to verify the tillage type. This effort 
resulted in data for 137 plots under CT, 144 plots under ST and 145 plots 
under ZT (Fig. 1a,b). The data included GPS locations at the four corners 
and centre of the plots, which were later used to create the plot poly-
gons. We overlaid the created polygons on high-resolution imagery in 
Google Earth and adjusted plot boundaries as needed to match those 
seen in the high-resolution imagery. The Google Earth images closest to 
the survey dates were used to ensure consistency between the surveyed 
plot boundaries and the visible boundaries in the imagery. Fig. 1c shows 
the sample plots overlaid on high-resolution imagery in Google Earth, 
and Fig. 1d depicts images of plot conditions observed for each tillage 
class. Form S1 gives the questionnaire used for the key informant 
interview and for the plot data recording. 

2.3. Satellite dataset and pre-processing 

We accessed the European Space Agency’s (ESA) freely accessible 
Sentinel-2 Level 2A (S2A) product via Google Earth Engine (GEE). These 
data were pre-processed using the Sen2Cor algorithm, correcting for 
atmospheric conditions and providing surface reflectance data (Main- 
Knorn et al., 2017). GEE’s scaling algorithm was applied to account for 
spatial resolution variations across spectral bands (’B2-B4’ and ’B8’ at 
10 m and ’B6’, ’B7’, ’B8A’, ’B11’, and ’B12’ at 20 m). All bands and 
indices were subsequently exported at 10 m resolution. Our filtering 
process removed S2A images with over 10 % cloud cover, and we 

utilized the ’QA60’ band (60 m) to further mask remnants of cloud cover 
and shadows. 

Since tillage activities are performed during the period between the 
end of the harvest of the monsoon crop and the pre-sowing of the winter 
crop, there is a strong relationship between different types of tillage 
practices and crop residue cover (Zheng et al., 2014). For example, fields 
with CT have no remaining residue cover as they get burned before 
tillage. In contrast, fields with ZT often have the most residue cover 
remaining on the field’s surface. To select the early season time period 
that would allow us to detect such differences in crop residue cover, we 
referred to the harvesting and sowing calendar for our study area 
recorded in our survey data. We opted to create multi-date image 
composites instead of relying on single-date images in order to overcome 
the issue of missing pixels caused by cloud cover. For our analysis, we 
divided our early season time window into three periods: the end of the 
harvest, pre-sowing and post-sowing. We then created 5-day image 
composites for each of these three-time steps based on the date of har-
vest, the start date of sowing and the end date of sowing defined using 
the survey data. Fig. 2a depicts the sowing calendar for sample plots 
reported in the survey data, and Fig. 2b–d shows false colour image 
composites of the end of harvest, pre-sowing and post-sowing periods, 
respectively. 

To account for the variability in agricultural fields and tillage 
methods, we examined various indices tailored for tillage detection in 
addition to chlorophyll indices. Our analysis encompassed three visual 
spectrum bands (B2–B4), a near-infrared (NIR) band (B8), three red- 
edge bands (B6–B7, and B8A), a SWIR-1 (short reflectance) band 
(B11), and a SWIR-2 (long reflectance) band (B12) for the computation 
of these pertinent indices. These indices include the normalized differ-
ence tillage index (NDTI), the soil tillage index (STI), the normalized 
difference vegetation index (NDVI), and the crop residue cover index 
(CRCI) (van Deventer et al., 1997; Carlson and Ripley,1997; Sullivan 
et al., 2006). Equations, literature references, and abbreviations for 
spectral indices used in the study are included in Table 1. Following the 
computation of spectral indices, we extracted the maximum values for 
each early-season period using the quality mosaic function in GEE 
within each of the 426 sample polygons. 

We followed the two-step change detection approach to enhance 
class separability with the image composites created for each of the 
three time steps. In the first step, we subtracted the pre-sowing image 
composite from the end-of-harvest image composite to determine the 
changes that occurred in crop residue cover and surface texture due to 
CT and ST. To further enhance the separability between the three clas-
ses, we subtracted the post-sowing image composite from the image 
generated in the first step. This allowed us to further separate classes 
based on the changes that occur during the sowing process in ZT plots. 
Based on maximum class separability, we selected the NDTI and STI 
indices for further classification. Fig. S1 shows the enhancement in class 
separability observed at each step of the change detection analysis. The 
final composite generated in the second step of the change detection 
analysis is used for the development of a tillage classification model 
using random forest in GEE. 

2.4. Model development and validation 

We employed the smileRandomForest (RF) algorithm in GEE to 
classify ZT, CT and ST fields (Gorelick et al., 2017). Previous research 
has demonstrated that RF tends to achieve high classification accuracies 
compared to other active learning models like support vector machines 
(Mao et al., 2020; Liu et al., 2022). We developed our model using the 
image composites produced using the change detection analysis and 
field polygon data of ZT, CT, and ST fields collected for 2022. To 
quantify the improvement in accuracy that we achieve by using our 
two–step change detection methodology in a random forest model, we 
compared our two-step change detection RF model (named Model A) 
with three RF models that were separately trained using -early season 
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images from each of the three distinct time windows: the end of the 
harvest (Model B), pre-sowing (Model C) and post-sowing (Model D). To 
optimize the performance of the classifiers, we conducted hyper-
parameter tuning. Through this process, we determined that the optimal 
number of decision trees for our random forest models were 250. 
Furthermore, we allocated a ratio of 60:10:30 for the training, hyper-
parameter tuning, and validation phases of the classifier, respectively. 
We used a distinct set of validation polygons that were not used in 
training and served as an independent validation dataset. Furthermore, 
we maintained an equal proportion of ZT, CT and ST fields for model 
training and validation. We compared the model performance of all 
models for 2022 and selected the model with the highest accuracy for 
further analysis. 

The best performing model (Model A) was then applied to imagery 
from the 2022, 2021, and 2020 post-monsoon seasons to estimate tillage 
adoption rates over the whole state of Punjab over three years. We 
believe that our model can be accurately applied through time, as pre-
vious studies that have mapped ZT have shown that random forest al-
gorithms used to classify tillage practices are consistent through time 
(Azzari et al., 2019; Zhou et al., 2021). The same image processing steps 

to crate the two-step change detection model described above were 
applied to Sentinel-2 images for the years 2021 and 2020 before 
applying the classification model. To ensure that we only applied our 
classification algorithm to agricultural plots, we masked out non- 
agricultural classes using the ESRI 2020 Global Land Use Land Cover 
product (10 m) available in GEE (Karra et al., 2021). To exclude any 
permanent vegetation in plots, which may have been missed during the 
field data collection, we masked out any pixels that had mean NDVI 
values greater than 0.35 during the early time season window (Pinty and 
Verstraete, 1992). Fig. 3 gives an overview of the methodology followed 
to develop the tillage classification model as well as tillage adoption rate 
estimates for 2022. 

2.5. Spatial and temporal trends in technology adoption 

We calculated overall areas under ZT, CT, and ST in 2020, 2021, and 
2022 across Punjab and for each district. We then examined values 
through time to understand whether areas under different tillage prac-
tices changed over the course of our study period. In addition, we 
examined areas (in ha) under each of the three tillage types using a 
three-year average to identify which districts planted the most and least 
area under ZT, CT, and ST. 

3. Results 

3.1. Validation of the model 

Our study employed four distinct random forest (RF) models, to 
classify ZT, ST and CT adoption rates over the Indian state of Punjab. The 
performance of each model was evaluated based on several key metrics: 
commission error, omission error, user’s accuracy, producer’s accuracy, 
and the F1 Score. Fig. 4 provides each accuracy metric for each tillage 
class, with higher relative accuracies highlighted with darker boxes. 

Model A, which used the two-step change detection method, per-
formed best across all models. Model A had the highest producer’s 

Fig. 2. (a) Bar diagram showing the distribution of wheat sowing activity across the sample villages reported in the ground survey. The red box highlights the 
window of maximum sowing activity and boundaries for pre and post-sowing periods. (b), (c) and (d) display the Sentinel-2 false colour composites (R: NIR, G: Red 
and B: Green) for end-of-harvest, pre-sowing and post-sowing time steps selected for change detection and classification. (2 column image). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
List of spectral indices used in this study.  

Index Full Name Abbreviation Equation Reference 

Normalized Difference 
Tillage Index 

NDTI ρSWIR1 − ρSWIR2
ρSWIR1 + ρSWIR2 

Pe ̃na-Barrag ́an 
et al., 2011 

Soil Tillage Index STI ρSWIR1
ρSWIR2 

Van Deventer 
et al., 1997 

Crop Residue Cover 
Index 

CRCI ρGREEN − ρSWIR2
ρGREEN + ρSWIR2 

Sullivan et al., 
2006 

Normalized Difference 
Vegetation Index 

NDVI ρNIR − ρRED
ρNIR + ρRED  

Stroppiana et al., 
2009  
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accuracy for ZT (92 %) and high user’s accuracy across all classes (ZT: 
70 %, ST: 87 %, and CT: 86 %). Model A also had consistently high F1 
scores (with an average F1 score of 81 %), representing a good precision- 
recall balance, despite its relatively high omission errors for ST (20 %) 
and CT (25 %). In contrast, Model B, which was trained solely using end- 
of-harvest images, performed poorly with the highest commission (ZT: 
16 %, ST: 13 %, and CT: 16 %) and omission errors (ZT: 29 %, ST: 31 %, 
and CT: 29 %), coupled with the lowest producer’s accuracy and F1 
scores across all classes (average F1: 70 %). These results suggest that 
Model B had significant challenges in both identifying classes correctly 
and avoiding false positives. 

Model C, which was trained using images from the pre-sowing 
window, showed moderate performance considering user’s accuracy 
and F1 scores, particularly for ST (72 % and 70 %, respectively) and CT 
(75 % for both). However, it also suffered from high omission errors, 
especially for ZT (31 %) and ST (32 %), and a commission error for CT 
(19 %). Model D, which was trained using post-sowing window images, 
had relatively low commission errors (13 % for ZT, 6 % for ST, and 15 % 
for CT). The particularly low commission error for ST (6 %) is a high-
light, indicating that Model D has a high degree of specificity in iden-
tifying the ST class. While Model D exhibited high producer’s accuracy 
for ZT (83 %) and user’s accuracies for ST and CT (85 % and 80 %, 
respectively), it did not consistently perform well across all metrics. 
Specifically, it performed poorly considering omission errors for ZT and 
CT, (17 % and 25 %, respectively). 

Fig. 5 gives the comparison between the overall accuracies of the 
four models. Model A provided the best balance between avoiding false 
positives and identifying actual instances of tillage activities. Therefore, 
Model A was applied to the 2021 and 2022 images for detecting the 

changes in tillage adoption through time. 

3.2. Technology adoption rates across space and time 

Our results revealed distinct tillage adoption trends for each tillage 
type over the three years from 2020 to 2022. Our results show a 
noticeable decrease in ZT adoption from 2020 to 2021, with the area 
under ZT reducing from 66,633 ha to 44,855 ha, a decline of approxi-
mately 33 %. However, the area under ZT increased in 2022, increasing 
to 53,191 ha, which is still lower than the initial 2020 area. ST showed a 
different pattern, with a substantial increase in the initial year, from 
81,096 ha in 2020 to 104,730 ha in 2021, marking a significant rise of 
around 29 %. The area under ST dropped slightly in the next year, with 
92,474 ha under ST in 2022, representing a modest decrease of about 12 
%, which is still higher than the area under ST 2020. CT, on the other 
hand, has seen relatively stable values, with a slight decrease (4 %) in 
area in 2021 (46,427 ha) compared to 2020 (48,282 ha). There was a 
slight increase in area under CT in 2022 (49,308 ha), which is roughly a 
6 % increase from the previous year and a 2 % increase from 2020. 
Among the 22 districts in Punjab, Hoshiarpur was found to have the 
highest adoption rate of ZT, with an average adoption rate of 57 %. Over 
the study period, prominent wheat and rice-producing districts like 
Bernala showed the highest ST adoption rate (62 %), followed by Moga 
(58 %) and Sangrur (57 %). Considering CT adoption rates, Fatehgarh 
Sahib had the highest adoption rate (27 %), whereas Hoshiarpur had the 
lowest adoption rate (19 %). Table 2 summarises the area (in ha) under 
each tillage type for all Punjab districts from 2020 to 2022. Fig. 6 shows 
the spatial distribution of field-level adoption of tillage technologies for 
2020 to 2022 over Punjab. 

Fig. 3. Methodology design for the estimation of tillage adoption rates using Sentinel-2 imagery. (2 column image).  
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4. Discussion 

ZT is an important conservation agriculture technology, yet there is 
limited knowledge about its adoption extent and its impacts, particu-
larly in developing countries. We examined the ability of Sentinel-2 
imagery to detect ZT adoption at the field scale in heterogeneous, 
smallholder systems. We used change detection methods on early season 
imagery to distinguish among three different tillage types: ZT, ST, and 
CT. Until now, the detection of tillage practices has largely been con-
strained to binary models that differentiate only between ZT and CT 
(Azzari et al., 2019; Zhou et al., 2021; Liu et al., 2022). However, 
quantifying other tillage practices, such as ST, is important, given that it 
comprises a large proportion of agricultural area in smallholder systems 
such as India. 

Our two-step change detection methodology significantly improves 
the RF classification across the three tillage classes. RF models trained 
using early season images only from one specific time window (end of 
harvest, pre and post sowing) were unable to obtain high classification 
accuracy across the three tillage classes. The best performing one time 
period model was Model D, which was trained using post-sowing im-
ages. In particular, it showed high specificity for ST, but did not perform 

as well when identifying ZT and CT. On the other hand, Model A, which 
was trained using the two-step early season change detection approach, 
was more balanced, demonstrating better overall precision and sensi-
tivity, particularly for ZT and CT. 

Model A performed well, with an overall accuracy of 81 %, which is 
higher than accuracies from previous studies that mapped ZT versus CT 
in multiple regions (Zheng et al., 2013; Azzari et al., 2019; Zhou et al., 
2021; Liu et al., 2022). Our work shows that Sentinel-2 imagery, along 
with our novel change detection methodology, has the potential to map 
tillage practices in heterogeneous, smallholder systems. 

Considering individual tillage types, the accuracies varied, with ZT 
having the best producer’s accuracy (92 %), followed by ST (80 %) and 
then CT (75 %). These differences in accuracies are likely due to dif-
ferences in the amount of crop residue typically left in the field when 
practising each tillage type. CT fields have no standing residue, as these 
residues are typically removed prior to tillage (typically through 
burning), and what residue remains is tilled within the soil when tillage 
machinery is used. This results in homogenous bare-field conditions 
within and across fields, which allows for higher classification accu-
racies. ZT, on the other hand, is characterized by crop residues 
remaining in the field even after ZT machinery is used, as residues are 

Fig. 4. The model comparison based on critical parameters: a) Commission Error, b) Omission Error, c) User’s Accuracy, d) Producer’s Accuracy, and e) the F1 Score. 
Rows represent the four models (models A-D) and columns represent each tillage class (ZT, ST, and CT). Darker colours represent more accurate values (2 col-
umn image). 
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not tilled into the soil during field preparation. Such contrasts in man-
agement practices result in distinctive spectral signatures that allow for 
the classification of ZT versus CT fields. However, ST plots exhibit 
characteristics resembling both ZT and CT fields because of the hybrid 
nature of field preparation. Though residues are not cleared prior to 
using the Super Seeder, ST fields appear bare after using the machinery, 
similar to CT fields, which often results in false-positive detections in the 
remote sensing model. Overall, we found that the modified change 
detection method we used did well in capturing differences in residue 
cover across the three tillage types early in the season. This is because 
the change between the monsoon crop harvest and pre-sowing of the 
winter crop captures residue cover prior to machinery use, which increas 
the class separability between CT fields (bare) versus ST or ZT plots 
(residue). In addition, the change between the pre-sowing and post- 
sowing time period captures textural changes in the field, such as the 
change in residue cover after tilling ST fields, which differentiates be-
tween ST (bare) and ZT (residue) fields (Luotamo et al., 2022; Quemada 
et al., 2018). 

Our temporal analysis indicated a decrease in the adoption rates of 
ZT and CT and an increase in the adoption rate of ST from 2020 to 2021. 
However, we found the opposite pattern from 2021 to 2022, when ST 
adoption rates decreased slightly (Fig. 7). The sudden increase in ST and 
decrease in ZT and CT from 2020 to 2021 may be associated with post- 
lockdown measures following Covid-19. Amidst the COVID-19 
pandemic in 2020, large labour migration increased the availability of 
agricultural labour in migrants’ home states, including Punjab (Ravin-
dra et al., 2022). This additional availability of labour may have 
incentivized farmers to forgo using CT. Additionally, the popularity of 
Supper Seeder machinery has seen a surge in Punjab in recent years with 
more and more farmers adopting ST practices (Krishna et al., 2022). 
Specifically, government subsidies and the availability of Super Seeder 
machinery may have motivated farmers to adopt ST over ZT. On the 
other hand, Punjab later faced large-scale farmer protests, reaching a 
peak in 2021, likely reducing available agricultural labour and acces-
sibility to the super seeder machinery. In addition, the protests also 
spurred anti-government sentiment, resulting in increased residue 

Fig. 5. Model performance comparison based on the overall classification accuracy (%).  

Table 2 
Model estimated area (ha) under ZT, ST and CT practices for districts of Punjab from 2022 to 2020.  

Year 2020 2021 2022 

District ZT (ha) ST (ha) CT (ha) ZT (ha) ST (ha) CT (ha) ZT (ha) ST (ha) CT (ha) 

Bathinda 72,008 150,314 76,746 64,576 161,622 72,870 50,286 174,824 73,958 
Faridkot 25,012 61,303 45,220 23,451 75,931 32,154 19,349 84,237 27,949 
Fatehgarh Sahib 42,917 32,327 26,963 19,405 56,958 25,844 29,149 42,304 30,755 
Hoshiarpur 142,726 44,996 38,651 116,403 64,553 45,414 130,805 53,573 41,996 
Jalandhar 88,499 83,662 49,476 54,869 115,108 51,660 66,913 102,122 52,601 
Kapurthala 58,258 53,849 32,728 36,519 71,114 37,203 44,429 63,545 36,862 
Ludhiana 123,434 106,663 67,708 61,029 167,956 68,821 80,629 140,017 77,159 
Mansa 50,585 103,682 50,099 43,181 111,146 50,039 32,847 118,167 53,352 
Moga 50,841 113,214 50,789 29,083 138,888 46,872 34,235 124,140 56,469 
Muktsar 46,402 120,919 74,462 45,382 139,187 57,214 47,858 139,871 54,054 
Shahid Bhagat Singh Nagar 59,567 22,629 21,431 35,199 44,597 23,831 45,862 30,739 27,026 
Barnala 25,100 80,923 34,968 16,980 94,433 29,579 18,506 86,174 36,311 
Fazilka 104,735 95,534 69,019 83,654 119,588 66,046 107,326 107,309 54,654 
Mohali 35,066 20,608 15,762 26,656 27,911 16,869 20,782 16,940 12,420 
Patiala 95,408 124,534 72,252 50,372 170,021 71,801 71,523 131,895 88,777 
Pathankot 26,738 16,566 12,547 21,241 21,864 12,746 24,433 18,258 13,160 
Tarantaran 70,832 94,625 56,984 43,408 118,084 60,949 54,949 113,536 53,956 
Amritsar 101,765 68,860 51,494 59,797 104,917 57,404 87,824 75,331 58,964 
Sangrur 74,909 170,021 78,152 41,774 214,801 66,507 58,661 166,747 97,673 
Gurdaspur 77,366 96,779 54,546 51,042 124,239 53,411 77,061 85,971 65,659 
Rupnagar 52,634 17,777 18,602 29,673 39,692 19,648 36,579 28,265 22,622 
Firozpur 41,128 104,333 63,604 33,110 121,454 54,502 30,201 130,467 48,397  
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burning, which was banned by the government. These factors may be 
responsible for farmers resorting back to ZT or CT practices as indicated 
by the slight increase in ZT and marginal increase in CT adoptions in 
2022.. While we speculate the potential causes of tillage change through 
time, more work is needed to better understand the reasons for these 
detected temporal changes in tillage practices, likely through survey 
work that elucidates farmer decision-making. It is also possible that 
some of the trends we see may be driven by errors in our remote sensing 
analysis, which we elaborate on below. 

While we achieved high accuracies, our remote sensing classification 
model had several limitations. First, the accuracy assessment results 
indicated that the model had higher commission errors for ZT and 
omission errors for ST and CT, which may have influenced estimates of 
their adoption rates, district and state scales. In particular, our confusion 
matrix (Fig. 4) suggests that there were misclassifications between CT 
and ST, likely given the similarity in bare field conditions after ma-
chinery use, and future work should focus on improving the separability 
of these classes. Second, it is possible that our remote sensing approach 
was limited in its ability to differentiate between tillage classes, given 
the short time frame of our study (3 years). This is because ZT helps to 
improve soil structure and fertility by preventing soil erosion as well as 
increasing the organic matter content of the soil, yet it is unlikely that 
these differences were captured in our remote sensing analysis as ZT has 

not been practised consistently in the same field for many years in our 
study region. Additionally Krishna et al. (2022) observed that ZT 
adoption is more likely among farmers situated more than 7.5 km from 
markets and those owning larger plots (≥1.7 ha), particularly when 
equipped with a Rotavator, with the highest adoption rates in those 
farming over 18 ha. This research underscores the impact of market 
proximity, land size, and machinery ownership on the implementation 
of ZT practices. Future work that examines this region over longer time 
scales may be able to identify these changes, improving the accuracy of 
classification over time. Our method is also limited by the availability of 
cloud free images, as it uses images only over a short time period early in 
the growing season when there is often cloud cover and haze. Because of 
this, we were only able to apply our model to three years when cloud- 
free imagery were available (2020–2022). Future work is needed to 
address this issue by using microwave satellite data (eg. Sentinel-1) that 
can penetrate cloud cover. Finally, we did not account for crop type in 
our analysis, which may lead to further misclassifications. While most 
farmers in the region practice the rice–wheat cropping cycle, some 
farmers plant other crop types (e.g., sugarcane) and we were unable to 
mask out these fields as we did not have access to a crop type mask. 

The findings of this study can significantly contribute to the devel-
opment of agricultural policies and sustainable land management stra-
tegies. For example, by implementing a cost-effective and scalable 
approach to monitor and assess tillage practices over large areas, the 
present study contributes a potential way to examine adoption trends, 
helping to identify the factors that influence farmers’ decisions to adopt 
ZT. By combining the spatiotemporal trends seen in the satellite data 
with on-the-ground survey and yield data, we can better identify the 
economic, social, and informational determinants of ZT adoption as well 
as the yield and economic impacts of ZT adoption (Ramulu et al., 2023; 
Krishna and Mkondiwa, 2023). In addition, satellite estimates of tillage 
practices can also be useful for quantifying carbon credits, which are 
associated with a reduction in carbon emissions or an increase in carbon 
sequestration. By estimating ZT adoption and its associated carbon 
sequestration, carbon market stakeholders, including governments and 
private firms, can more accurately quantify carbon offsets from this 
practice. Governments can use this information to create targeted in-
centives for farmers to adopt carbon-friendly ZT or other such practices. 
This policy support can stimulate greater participation in carbon mar-
kets and enhance their effectiveness in mitigating climate change. 
Furthermore, our methodology could empower farmers by providing 
them with the data needed to quantify their carbon offsets accurately. 

Fig. 6. Final model classification results depicting the spatial distribution of ZT, CT and ST adoption over the study area for (a) 2020, (b) 2021 and (c) 2022. (2 
column image). 

Fig. 7. Model estimated percente adoption of tillage technologies over the 
study area from 2020 to 2022. (2 column image). 
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This, in turn, can make it more attractive for farmers to engage in carbon 
market transactions, thereby generating additional income and incen-
tivizing sustainable land management practices. (Thenkabail et al., 
2010; Jackson Hammond et al., 2021). 

5. Conclusion 

Estimating ZT adoption at large spatiotemporal scales is crucial for 
promoting sustainable agriculture and designing supportive policies. 
Using Sentinel-2 imagery and Google Earth Engine, we developed a 
model that classified ZT, ST, and CT with overall accuracy and an 
average F1 score of 81 %. We applied this model to the state of Punjab 
from 2020 to 2022 and found that ST adoption rates have increased by 
29 % in 2021 but showed 12 % decrease in 2022. On the other hand, 
area under ZT decreased significantly (33 %) in 2021 and did not 
recover back to its 2020 levels despite an increase in 2022. CT adoption 
rates remained steady across Punjab throughout our study period 
(2020–22). The use of remote sensing data offers a scalable approach to 
monitor tillage practices at large spatial and temporal scales. By 
leveraging these tools and findings, policymakers and agricultural 
stakeholders can make informed decisions to promote sustainable land 
management through the adoption of ZT. 
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