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Abstract 
Conservation agriculture is often assumed to reduce soil  N2O emissions. Yet, studies analyzing the specific effect of conservation 
agriculture practices on  N2O emissions give contradictory results. Herein, we synthesized a comprehensive database on the three 
main conservation agriculture practices (cover crops, diversified crop rotations, and no-till and/or reduced tillage (NT/RT)) to elu-
cidate the role of conservation practices on  N2O emissions. Further, we used a random meta-forest approach to identify the most 
important predictors of the effects of these practices on soil  N2O emissions. Averaged across all comparisons, NT/RT significantly 
decreased soil  N2O emissions by 11% (95% CI: –19 to –1%) compared to conventional tillage. The reductions due to NT/RT were 
more commonly observed in humid climates and in soils with an initial carbon content < 20 g  kg–1. The implementation of cover 
crops and diversified crop rotations led to variable effects on soil  N2O emissions. Cover crops were more likely to reduce soil  N2O 
emissions at neutral soil pH, and in soils with intermediate carbon (~20 g  kg–1) and nitrogen (~3 g  kg–1) contents. Diversified crop 
rotations tended to increase soil  N2O emissions in temperate regions and neutral to alkaline soils. Our results provide a comprehensive 
predictive framework to understand the conditions in which the adoption of various conservation agriculture practices can contribute 
to climate change mitigation. Combining these results with a similar mechanistic understanding of conservation agriculture impacts 
on ecosystem services and crop production will pave the way for a wider adoption globally of these management practices.

Keywords Cover crops · Diversified crop rotations · No-till · Reduced tillage · Nitrous oxide · Agricultural management 
practices

1 Introduction

Conservation agriculture is a farming concept promoting 
maintenance of permanent soil cover (e.g., cover crops), 
crop diversification (e.g., different crops in rotation), and 

minimum soil disturbance (e.g., no-till and/or reduced till-
age [NT/RT]) (Giller et al. 2015; Northrup et al. 2021). 
The main goals of these farming concepts are to promote 
soil and water conservation and increase soil carbon (C) 
storage (González-Sánchez et al. 2012; Knapp and van 
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der Heijden 2018; Rusinamhodzi et al. 2011). However, 
the effects of these practices on soil nitrous oxide  (N2O) 
emissions remain controversial (Basche et al. 2014; Lemke 
et al. 1998; Sainju 2015). Since  N2O is a powerful green-
house gas (GHG) accounting for ~6% of current anthropo-
genic climate change (IPCC 2014), it is critical to resolve 
the role of conservation practices on  N2O emissions (John-
son et al. 2005). Nitrous oxide is predominantly emitted 
from agricultural soils and is mostly attributed to deni-
trification processes, but nitrification can also contribute 
strongly to soil  N2O emissions (Reay et al. 2012). The 
100-year global warming potential of  N2O is 273 times 
that of carbon dioxide (IPCC 2021). Therefore, the poten-
tial benefits of these practices for climate change mitiga-
tion due to higher soil C storage can be offset by small 
increases in soil  N2O emissions (Lugato et al. 2018).

Cover crops can offer many ecosystem benefits, such as 
weed suppression, improved soil fertility, and decreased 
nutrient leaching and soil erosion relative to no cover 
crops (Akhtar et al. 2018; Poeplau and Don 2015; Thapa 
et al. 2016). Although cover crops can enhance environ-
mental quality and soil health through increased soil C 
and nitrogen (N) cycling (Abalos et al. 2022a; Muhammad 
et al. 2019), they have highly variable effects on soil  N2O 
emissions. A meta-analysis by Basche et al. (2014) stated 
that the cover crop types (that is, legume or non-legume), 
biomass production, lignin content, and residue C/N ratios 
are the main factors driving the  N2O emission variability. 
However, the relative importance of these factors was not 
identified. Furthermore, the role played by climatic and 
soil parameters is still largely unknown but is needed to 
understand the conditions in which cover crops can be 
used as an agricultural practice that also mitigates climate 
change.

Globally, cropping systems range from monocultures 
to complex crop rotations, which have many varied crops 
sequentially planted (Chen et  al. 2020b; Tenuta et  al. 
2019). Increased crop diversification can induce complex 
changes in soil properties affecting the abundance and 
function of  N2O-producing soil microbial communities 
(Adviento-Borbe et al. 2006; Banerjee et al. 2016; Tie-
mann et al. 2015). For example, several studies found that 
diversified crop rotations can increase soil  N2O emissions 
(e.g., Alvarez et al. 2012; Mosier et al. 2006; Sainju et al. 
2012), and this can be due to stimulation of nitrifying and 
denitrifying bacterial abundance (Linton et al. 2020). Con-
versely, Snyder et al. (2009) found that a corn-soybean-
wheat (Triticum aestivum L.) rotation had lower soil  N2O 
emissions in comparison to a continuous corn cropping 
for the entire rotation. Similarly, other studies found that 
more diverse crop rotations lowered soil  N2O emissions 
compared to mono-crop planting (Adviento-Borbe et al. 

2007; Jacinthe and Dick 1997; Johnson et al. 2010). This is 
especially evident when all phases of the rotation are con-
sidered so that a ‘rotational average’ is compared with less 
diverse rotations (Drury et al. 2014a, b, 2021). Despite 
their potential for  N2O mitigation, the effects of diverse 
crop rotations have not been quantitatively synthesized.

The implementation of conservation tillage (NT/RT) is 
widely promoted globally among many diverse crop rota-
tions and cropping systems to increase soil organic C, con-
serve soil water, enhance soil fertility, and reduce soil ero-
sion, relative to conventional tillage (Rochette et al. 2008; 
Snyder et al. 2009; Venterea et al. 2005). Yet, from a climate 
change mitigation perspective, NT/RT effects on soil  N2O 
emissions have been intensively debated and are highly vari-
able among individual studies (Abdalla et al. 2013; Powlson 
et al. 2012; Rochette et al. 2008; van Kessel et al. 2013; 
Zhao et al. 2016). Previous studies on the impact of adopt-
ing NT/RT reported that soil  N2O emissions were increased 
(Ball et al. 1999; Sainju 2015; Zhang et al. 2016), decreased 
(Drury et al. 2006, 2012; Gregorich et al. 2008; Mosier et al. 
2006), or did not change (Lemke et al. 1998). A meta-analy-
sis revealed that the effects of NT/RT on soil  N2O emissions 
may be time- and climate-dependent, with NT/RT only lead-
ing to  N2O reductions in dry climates and after more than 10 
years after the implementation (van Kessel et al. 2013). The 
higher availability of studies since the meta-analysis of van 
Kessel et al. (2013) and the development of new statistical 
tools may allow us to better understand the robustness of 
these patterns. For example, a random-meta-forest analysis 
is a recently developed tool that can simultaneously assess 
various kinds of non-numeric and numeric variables, help-
ing handle many potential predictors and their interactions 
(Abalos et al. 2022b; Chen et al. 2020a; Terrer et al. 2019). 
Therefore, it can be used to identify the main factors by 
which NT/RT (and cover crops and diversified crop rota-
tions) regulates soil  N2O emissions and rank their relative 
importance.

Our objective was to synthesize the results of studies 
measuring the effects of cover crops, diversified crop rota-
tions and NT/RT on soil  N2O emissions relative to no cover 
crops, mono-cropping and conventional tillage, respectively. 
A random-meta-forest approach was used to explore the main 
drivers of the effects of these conservation agriculture prac-
tices on soil  N2O emissions. We hypothesized that the links 
between soil properties, climatic and management factors can 
be unfolded to develop a predictive framework of the effects 
of conservation agriculture practices on soil  N2O emissions. 
Our study is the first to 1) concurrently test the effects of 
the three main conservation agriculture practices on soil  N2O 
emissions; and 2) incorporate a wide variety of soil, experi-
mental and environmental predictors affecting responses of 
soil  N2O emissions to these practices.
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2  Materials and methods

2.1  Data compilation

The dataset in this meta-analysis was constructed by using Sco-
pus, Google Scholar (Google Inc., Mountain View, CA, USA; 
http:// schol ar. google. com/) and Web of Science (WOS; http:// 
apps. webof knowl edge. com/) following a screening of appli-
cable studies within the Managing Agricultural Greenhouse 
Gases Network (MAGGnet) (Liebig et al. 2016). We searched 
peer-reviewed articles evaluating the effects of conservation 
agriculture practices that included cover crops, diversified crop 
rotations and NT/RT on soil  N2O emissions. For each study, 
we noted whether cover crops, diversified crop rotations, and 
NT/RT were compared with no cover crops, mono-cropping as 
well as conventional tillage, respectively. The keywords used 
for the paper selection were: (1) “cover crops” OR “reduced till-
age” OR “rotations” OR “no-till” OR “zero tillage”, OR “con-
servation tillage”, AND (2) “nitrous oxide” OR “greenhouse 
gas” OR “N2O” OR “GHG”, AND (3) “soil” OR “land”. The 
publications were included in this meta-analysis if they met the 
following criteria: (a) all factors (e.g., fertilization, soil prop-
erties and climatic parameters) were similar for cover crops, 
diversified crop rotations and NT/RT and the corresponding 
control treatments, (b) studies reported the experimental design 
and the details of recent history, (c) results were obtained under 
field conditions, and (d) the mean and the number of replica-
tions (n) were available. Moreover, standard deviation (SD) or 
standard error (SE) values were collected from articles when 
possible. Missing variances were calculated using the average 
coefficient of variation (CV) across the data set (van Groenigen 
et al. 2017). If the SD values were not reported in the studies, 
they were calculated from reported SE values, or CV according 
to the following equations:

For each study in our data set, we also tabulated details on 
the experimental and environmental variables: climate vari-
ables [mean annual temperature (MAT), mean annual precipi-
tation (MAP)], site location [latitude and longitude], elevation, 
soil pH, soil organic C, soil total N, soil clay content, soil C:N 
ratios, experiment duration (in years), and annual fertilizer rate 
(<150 kg N  ha‒1  yr‒1, 150–200 kg  ha‒1  yr‒1 and >200 kg N 
 ha‒1  yr‒1). When published data were only presented graphi-
cally, WebPlotDigitizer (https:// autom eris. io/ WebPl otDig 
itizer/) was used to extract data. There were a number of stud-
ies where some of the supporting information was not listed in 
the published manuscript with the soil  N2O emissions data. In 
these cases, we contacted corresponding authors and requested 
the missing information. For the remaining missing values, we 

(1)SD = SE ×

√

n

(2)SD = mean × CV

extracted MAT and MAP from WorldClim 2.1 (https:// www. 
world clim. org/), and soil clay content, soil pH, soil organic 
carbon (C), and soil total nitrogen (N) from SoilGrid 2.0 
(https:// soilg rids. org/). Soil C:N was calculated as the ratio of 
soil organic C and soil total N. Mean values of annual potential 
evapotranspiration for each study site were extracted from the 
Global Aridity Index geodatabase (https:// cgiar csi. commu nity/ 
data/ global- aridi ty- and- pet- datab ase/). Aridity Index (AI) was 
calculated as the ratio of MAP to mean annual potential evapo-
transpiration. Study sites with an AI <0.65 were categorized as 
‘dry’, whereas study areas with a higher AI were categorized 
as ‘humid’ (UNEP 1997). Moreover, for cover crops, studies 
were divided into three categories (cash crops, cover crops, 
or both) based on the phase of the rotation in which the soil 
 N2O emissions were measured. Cover crop types were grouped 
into legume and non-legume. For the diversified crop rota-
tions, the results are also analyzed according to the phase in the 
crop rotation (entire rotation or only when the corresponding 
monoculture crop was present in the rotation) in which the soil 
 N2O emissions were measured. The final database included 97 
direct comparisons between cover crops and no cover crops, 
33 direct comparisons between diversified crop rotations and 
mono-cropping, and 151 direct comparisons between NT/RT 
and conventional tillage. The geographical distribution of the 
studies is presented in Fig. 1. The articles and the number 
of comparisons within each article that were included in the 
analysis and related information such as experiment duration 
and climate are listed in Table S1.

2.2  Statistical analyses

We assessed the effects of cover crops, diversified crop rota-
tions and NT/RT on soil  N2O emissions by calculating the nat-
ural log-transformed response ratio (lnR) (Hedges et al. 1999):

where XTreatment refers to the cumulative mean value of soil 
 N2O emissions in cover crops, diversified crop rotations, 
and NT/RT, XControl is the cumulative mean value of soil 
 N2O emissions in the corresponding control treatment (that 
is, no cover crops, mono-cropping, or conventional tillage).

The variance (vi) of lnR was calculated as:

where SDTreatment is the standard deviation in cover crops, 
diversified crop rotations, and NT/RT, SDControl is the stand-
ard deviation values in the corresponding control treatment, 
nTreatment and nControl are the replicate numbers in cover crops, 
diversified crop rotations, or NT/RT and the corresponding 
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control treatment, and XTreatment and XControl are cumulative 
values for soil  N2O emissions for cover crops, diversified 
crop rotations, or NT/RT and the corresponding control 
treatment, respectively.

A weighted mixed-effects model was performed using the 
‘rma.mv’ function in the R package ‘metafor’ (Abalos et al. 
2022b; Chen et al. 2020a; Viechtbauer 2010). To ensure 
the independence of each observation, ‘publication’ and 
‘observation’ were set as random factors in the mixed-effects 
models. The results were shown as percentage changes to 
ease interpretation [i.e.,  (elnR-1) × 100]. The effects of cover 
crops, diversified crop rotations, and NT/RT were consid-
ered significant if the 95% confidence intervals (CIs) did not 
overlap with zero. Moreover, a random-forest model selec-
tion was used to identify the most important predictors (soil 
properties, weather factors and management practices) of 
the effects of cover crops, diversified crop rotations and NT/
RT on soil  N2O emissions in the dataset. We incorporated 
available predictors in a bootstrapped random-forest meta-
analysis with recursive preselection using the 'metaforest' 
package of R (Terrer et al. 2019; Van Lissa 2017; Zhang 
et al. 2022). Based on partial dependence plots (Figs. S1, S2 
and S3), the reciprocal transformations were used for nonlin-
ear predictors. The most important predictors (13 for cover 
crops, 12 for diversified crop rotations, and 11 for NT/RT) 
were included in a mixed-effects meta-regression model with 
the ‘metafor’ package of R (Terrer et al. 2016; Viechtbauer 
2010). Finally, quadratic and linear meta-regressions were 
fitted to show the best model describing the links between 

the most important predictors and lnR. The optimal regres-
sion model was selected by Akaike information criterion 
(AIC; quadratic and linear models were considered), and the 
best model with lower AIC was retained.

3  Results

Averaged across the whole data set, NT/RT significantly 
decreased soil  N2O emissions by 10.6% (95% CI = −18.9 to 
−1.4%; Fig. 2a). In contrast, cover crops (mean effect size 
= 3.3%; 95% CI = –14.8% to 25.2%) and diversified crop 
rotations (mean effect size = 1.6%; 95% CI = −27.8% to 
43.0%) had no significant effects on soil  N2O emissions due 
to a very large variability across the study sites (Fig. 2a). The 
responses of soil  N2O emissions (lnR-N2O) were normally 
distributed for cover crops and the implementation of NT/
RT, but not for diversified crop rotations (Fig. 2b).

Our random-meta-forest method identified soil pH, soil 
total N, and soil organic C as the most important predictors 
of the effects of cover crops on soil  N2O emissions (Fig. 3a). 
Cover crops-derived soil  N2O emissions were lowest at neu-
tral soil pH (AIC=152, n=97; Fig. 3b), soil total N of ~3 g 
 kg–1 (AIC=151, n=97; Fig. 3c), and soil organic C of ~20 
g  kg–1 (AIC=152, n=97; Fig. 3d). An absence of variation 
in predicted cover crop effects across cover crop types and 
climatic conditions reflected the lower predictive power of 
these factors (Fig. S1).

Fig. 1  Distribution of conservation agriculture practices included in the meta-analysis. Different shapes indicate climate (dry and humid), and 
different colors refer to the type of conservation agriculture practice. Rotation, diversified crop rotations; NT/RT, no-till and/or reduced tillage.
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Among 11 potential predictors, MAT, soil pH, and soil 
clay content were the primary modulators of the responses 
of soil  N2O emissions to diversified crop rotations vs mono-
cropping (Fig. 4a). Soil  N2O emissions from diversified 
crop rotations reached a maximum at the MAT values of 
13–15℃ (AIC=82, n=33; p< .05) and at soil pH values of 
7–8 (AIC=85, n=33; p < .05) compared to  N2O emissions 
from mono-cropping (Figs. 4b, c). Soil  N2O emissions from 
diversified crop rotations were reduced at increasing val-
ues of soil clay content (Fig. 4d). Partial dependence plots 

showed the weaker predictive power of other factors (i.e., 
soil total N, experiment duration, MAP, climate, fertilizer 
rate, and rotation crop) for the effects of diversified crop 
rotations on soil  N2O emissions (Fig. S2).

Our random-forest meta-analysis showed that the most 
important predictors of NT/RT effects on soil  N2O emis-
sions in our dataset were initial soil organic C, MAP, and 
soil C:N ratios (Fig. 5a). Soil  N2O emissions from NT/RT 
increased with increasing values of soil organic C (AIC= 
274, n=151; p=0.20; Fig. 5b) but decreased with increasing 

Fig. 2.  a Effects of cover crops, 
diversified crop rotations (rota-
tion), and no-till and/or reduced 
tillage (NT/RT) on soil  N2O 
emissions. (b) Distribution of 
log-transformed response ratios 
of soil  N2O emissions (lnR-
N2O) to cover crops, diversi-
fied crop rotations and NT/
RT practices. Error bars refer 
to bootstrap 95% confidence 
intervals (CIs). The numbers are 
sample sizes. The fitted curves 
are from the estimated Gaussian 
distribution in frequency.

Fig. 3  a Variable importance 
of the factors regulating the 
impacts of cover crops on soil 
 N2O emissions based on the 
random-meta-forest approach. 
(b, c, and d) Meta-analytic scat-
terplots between the effects of 
cover crops on soil  N2O emis-
sions and the most important 
predictors of these effects (soil 
pH, soil total nitrogen, and soil 
organic carbon). The optimal 
regression model was chosen by 
Akaike Information Criterion 
(AIC). Crop: the phase of the 
rotation in which the soil  N2O 
emissions were measured (cash 
crops, cover crops, or both of 
them); MAP: mean annual 
precipitation; MAT: mean 
annual temperature; Cover crop 
types: legume and non-legume; 
Climate: humid and dry; Ferti-
lizer rate: <150 kg N  ha–1  yr–1, 
150–200 kg N  ha–1  yr–1 and 
>200 kg N  ha–1  yr–1.
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MAP (AIC=268, n=151; p=0.01; Fig. 5c). Soil  N2O emis-
sions from NT/RT increased with soil C:N ratios, reach-
ing a maximum at ~10–12 (Fig. 5d). Soil  N2O emissions 
responses to NT/RT were not well predicted by climate and 
fertilizer rate (Fig. S3).

Cover crops tended to reduce soil  N2O emissions as 
the N fertilizer rate applied to the cash crops increased 
(Fig. 6). Cover crop effects on soil  N2O emissions did not 
differ between cover crop types (legume or non-legume) or 
climate regimes (dry or humid). When separated by crop 
rotation phase in which the soil  N2O emissions were meas-
ured, the increases in soil  N2O emissions in cover crop 
studies were significant when only the cover crop phase 
was included, but not when measurements also included 
the cash crop phase (Fig. 6). No significant diversified 
crop rotation effects were found after separating the data 
set by fertilizer rate (<150 kg N  ha‒1  yr‒1, 150–200 kg 
 ha‒1  yr‒1and >200 kg N  ha‒1  yr‒1), climate regime (dry 
or humid), or period in the rotation when soil  N2O emis-
sions were measured (entire rotation compared to a mono-
culture crop or only when the same crop in the rotation 
as the monoculture crop are compared). For NT/RT, the 
reductions of soil  N2O emissions were only significant in 
humid climates. No significant NT/RT effect was found 
when separated by fertilizer rate.

4  Discussion

4.1  Effects of cover crops on soil  N2O emissions

Our meta-analysis found that cover crops increased, 
decreased or had neutral effects on soil  N2O emissions 
(Fig. 2a), confirming the trends observed in previous stud-
ies (Basche et al. 2014; Poeplau and Don 2015; Shan and 
Yan 2013). We found that the effects were modulated by 
specific management practices, N fertilizer rate and edapho-
climatic factors. Cover crops tended to increase soil  N2O 
emissions mainly during the cover crop phase of the rota-
tion (Fig. 6), and this could be explained by the C supply 
from rhizodeposition through actively growing root systems, 
promoting denitrification (Abdalla et al. 2013; Mitchell et al. 
2013; Webb et al. 2000). Moreover, we found that the capac-
ity of cover crops to reduce soil  N2O emissions increased as 
N fertilizer rate to the previous cash crop rises (Fig. 6). This 
could be because cover crops can utilize the residual soil 
N in the late fall, which would reduce  N2O emissions from 
both nitrification and denitrification (Abdalla et al. 2019; 
Drury et al. 2014b). Our finding of no significant effects 
of cover crop types (legume vs non-legume) on soil  N2O 
emissions is inconsistent with Muhammad et al. (2019), 
who reported higher soil  N2O emissions with legume cover 

Fig. 4  a Variable importance 
of the factors regulating the 
impacts of diversified crop 
rotations on soil  N2O emissions 
based on the random-meta-
forest approach. (b, c, and 
d) Meta-analytic scatterplots 
between the effects of diver-
sified crop rotations on soil 
 N2O emissions and the most 
important predictors of these 
effects (MAT, soil pH, and 
soil clay content). The optimal 
regression model was chosen by 
Akaike Information Criterion 
(AIC). MAP: mean annual pre-
cipitation; MAT: mean annual 
temperature; Climate: humid 
and dry; Fertilizer rate: <150 kg 
N  ha–1  yr–1, 150–200 kg N  ha–1 
 yr–1 and >200 kg N  ha–1  yr–1.
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crops than with non-legume cover crops. The lack of dif-
ference between cover crop types in our study supports the 
notion that legumes have a high capacity to self-regulate in 
terms of N input via  N2 fixation (De Notaris et al. 2021), 
and therefore their effects on N cycling (including soil  N2O 
emissions and nitrate leaching) are similar to those of non-
legume cover crops. Additional field studies are warranted 
to clarify the potential differences between cover crop types 
in terms of  N2O emissions, including other plant functional 
groups and more detailed trait-based approaches.

Soil pH, soil total N and soil organic C were strong pre-
dictors of the effect of cover crops on soil  N2O emissions 
(Fig. 3a). Cover crops-derived  N2O emissions were lowest 
at neutral soil pH (Fig. 3b). The reason may be that neu-
tral soil pH values stimulate cover crop biomass produc-
tion, which can decrease  N2O emissions by increasing plant 
N uptake thereby lowering soil mineral N availability for 
nitrifiers and denitrifiers, and also due to higher plant water 
uptake, which could decrease soil moisture content below 
the optimum for  N2O production (Abalos et al. 2020; Zhang 
et al. 2022). Cover crops were more likely to reduce soil 
 N2O emissions from soils with intermediate soil N and soil 
organic C contents. In soils with low C and N contents, cover 
crops can trigger  N2O by increasing the availability of C and 
N through root exudation and plant biomass decomposition. 
In soils with high C and N contents, a more diverse and 
abundant microbiome may be able to decompose the cover 
crop biomass more efficiently (Jian et al. 2020), and greater 

abundance of N-cycling microorganisms can increase the 
amount of  N2O produced (Zhang et al. 2021).

4.2  Effects of diversified crop rotations on soil  N2O 
emissions

Diversified crop rotations are a broad category often with 
a mixture of different agronomic practices, and the effects 
may depend on what crops are used to diversify, as well as 
the fertilization and tillage practices required for each of 
those crops (Venter et al. 2016; Zhao et al. 2020). In addi-
tion, in many diversified rotations total  N2O emissions from 
the entire rotation sequence can be lower because there are 
fewer phases that receive mineral N fertilizer (Drury et al. 
2021; MacWilliam et al. 2018; Zhao et al. 2022). However, 
we did not find differences in soil  N2O emissions according 
to the period in the rotation in which soil  N2O emissions 
were measured. Despite this high variation, our study was 
able to identify the main factors determining when diversi-
fied crop rotations may be able to reduce soil  N2O emis-
sions. Mean annual temperature was the best predictor of 
the effects of diversified crop rotation on soil  N2O emissions, 
with emission reductions mainly observed at low MAT val-
ues (Fig. 4a). Diversified crop rotations can promote the 
growth of nitrifying and denitrifying communities (Linton 
et al. 2020), and stimulate soil  N2O emissions by providing 
a higher quantity, quality, and chemical diversity of C inputs 
(Zhao et al. 2020). It is possible that these effects are less 

Fig. 5  a Variable importance 
of the factors regulating the 
impacts of no-till and/or 
reduced tillage (NT/RT) on soil 
 N2O emissions based on the 
random-meta-forest approach. 
(b, c, and d) Meta-analytic 
scatterplots between the effects 
of no-till and/or reduced tillage 
on soil  N2O emissions and the 
most important predictors of 
these effects (soil organic car-
bon, MAP, and soil C:N ratios). 
The optimal regression model 
was chosen by Akaike Informa-
tion Criterion (AIC). MAP: 
mean annual precipitation; 
MAT: mean annual tempera-
ture; Climate: humid and dry; 
Fertilizer rate: <150 kg N  ha–1 
 yr–1, 150–200 kg N  ha–1  yr–1 
and >200 kg N  ha–1  yr–1.
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clear when  N2O production processes and microbial min-
eralization are limited by low temperatures (Aulakh et al. 
1992; Behnke et al. 2018; Chen et al. 2022; Johnson et al. 
2011, 2012; Smith et al. 2011; Snyder et al. 2009). Another 
possibility is that, since complex rotations can increase soil 
moisture (Linton et al. 2020; Zhao et al. 2020), they might 
have increased soil  N2O emissions in warmer and drier sites. 
In Mediterranean climates for example, nitrification can be 
the main contributor to  N2O emissions because soil water-
filled pore space does not exceed 60% often (Ardenti et al. 
2022; Bateman and Baggs 2005; Perego et al. 2016) and 
therefore slight increases in soil moisture induced by com-
plex rotations can stimulate  N2O emissions.

Soil pH and soil clay content were important predictors of 
soil  N2O emissions from diversified crop rotations (Fig. 4a). 
Increases in soil  N2O emissions with more complex rotations 
were observed at neutral soil pH values, perhaps because 
soil acidity constrains the potential changes in soil microbial 

communities induced by diversified rotations. The relation-
ship between soil clay content and lnR-N2O is difficult to 
explain, and the patterns are less clear (Fig. 4d), suggesting 
that a confounding variable may be behind these effects. 
Indeed, we found that soil clay content was positively cor-
related with soil pH for this dataset (Spearman’s rank cor-
relation coefficient = 0.49), and therefore the role of soil clay 
content should be interpreted with caution. The sample size 
for the extremes of clay content was small in this analysis, 
which could bias the results. More field studies are needed 
to rigorously explore the response of soil  N2O emissions to 
diversified crop rotations as affected by soil clay content.

4.3  Effects of NT/RT on soil  N2O emissions

Consistent with previous meta-analyses (Mei et al. 2018; van 
Kessel et al. 2013), the implementation of NT/RT signifi-
cantly decreased soil  N2O emissions (Fig. 2a). In contrast, 
a recent meta-analysis conducted by Shakoor et al. (2021) 
stated that NT significantly increased soil  N2O emissions 
by 12%. We found that the  N2O reductions induced by NT 
were positively related to the MAP (Fig. 5c), implying  N2O 
mitigation was more commonly found in humid climates 
(Fig. 6), which is supported by Mei et al. (2018) and van 
Kessel et al. (2013). As indicated by the latter authors, the 
higher soil moisture content promoted by NT/RT might not 
be sufficient to increase soil  N2O emissions from denitrifica-
tion in regions where soil moisture content is already high 
due to abundant rainfall (humid climates); conversely, NT/
RT can further stimulate nitrification, heterotrophic denitri-
fication and/or nitrifier denitrification by increasing the soil 
water filled-pore space under dry climates (Cox et al. 1990; 
Dobbie and Smith 2003; Palma et al. 1997).

Our analysis using the random-meta-forest method 
showed that soil organic C and soil C:N ratios had strong 
predictive power regarding soil  N2O emissions after NT/RT 
implementation, which is consistent with other meta-analy-
ses (Shakoor et al. 2021). Reductions in soil  N2O emissions 
from NT/RT in soil with low C content may be mediated by 
changes in soil physical conditions, as NT/RT can increase 
soil organic matter content (Ogle et al. 2012). Increasing 
soil organic matter can progressively improve soil structure, 
which could suppress the formation of anaerobic microsites 
conducive to soil  N2O production (Ussiri et al. 2009; Malhi 
et al. 2006). Such soil organic matter increases are more 
likely to be observed in soils with lower initial C content 
relative to soils with greater soil C concentration (Huang 
et al. 2018).

4.4  The way forward

Using a yield-scaled approach can be a valuable tool to 
reconcile the targets of increasing food production while 

Fig. 6  Effect of cover crops, diversified crop rotations, and no-till 
and/or reduced tillage (NT/RT) on soil  N2O emissions as a function 
of N fertilizer rate and climate. For the cover crops, the results are 
also shown as a function of the cover crop type, and crop of the phase 
of the rotation in which the soil  N2O emissions were measured. For 
the diversified crop rotations, the results are also shown as a function 
of the phase in the crop rotation (entire rotation or only when the cor-
responding monoculture crop was present in the rotation) in which 
the soil  N2O emissions were measured. Error bars represent bootstrap 
95% confidence intervals (CIs). Error bars represent 95% confidence 
intervals, and the numbers refer to sample size.
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reducing agricultural GHG emissions. This methodology 
should be considered in future meta-studies to understand 
the feasibility of conservation agriculture practices, since 
their potential effects on crop yields are highly uncertain. 
For example, while diversified crop rotations tend to increase 
crop yield (Zhao et al. 2020), NT/RT can reduce it, depend-
ing on climatic and soil factors (Huang et al. 2018; Pittelkow 
et al. 2015; van Kessel et al. 2013; Wang et al. 2018). The 
impact of cover crops on yield is particularly variable, and 
depends on the cover crop species, the termination timing, 
and the method of termination, among others management 
practices (Abdalla et al. 2019; Tonitto et al. 2006; Valkama 
et al. 2015; Wang et al. 2021).

Conservation agriculture practices can increase agro-
ecosystem complexity (Abalos et al. 2019; Grandy et al. 
2022), providing an opportunity to transition into more bio-
logically based agroecosystems that rely more on internal 
N cycling and less on external N inputs, and this could be 
better assessed in future synthesis work by normalizing  N2O 
emission (and ammonia volatilization, nitrate leaching, nitric 
oxide and  N2 emissions) based on N application. This emis-
sion factor approach (IPCC 2021) can be a way to account 
for the differences in N fertilizer rates due to e.g., the extra 
N provided by biological N fixation with legumes, or for 
reduced N losses with cover crops (i.e., N quota), providing 
a clearer picture of the wider implications of conservation 
agriculture practices for N cycling.

5  Conclusion

We conducted a global meta-analysis to understand the 
impacts of conservation agriculture practices (cover crops, 
diversified crop rotations and NT/RT) on soil  N2O emis-
sions. Conservation agriculture can promote ecosystem 
multi-functionality by enhancing regulating and support-
ing services, including biodiversity preservation, soil and 
water quality, and climate mitigation (Wittwer et al. 2021). 
However, our results show that climate benefits may be 
sometimes compromised under specific edaphoclimatic 
conditions due to potential increases in soil  N2O emis-
sions. Only conservation tillage (NT/RT) appeared to 
mitigate soil  N2O emissions consistently across the three 
main conservation agriculture practices included in this 
analysis. However, NT/RT can jeopardize crop produc-
tion if not adopted in combination with cover crops and 
longer rotations (Pittelkow et al. 2015) as expected accord-
ing to the principles of conservation agriculture. This is 
particularly the case under wet and cool soil conditions in 
humid regions, which may delay emergence and reduce 
cash crop yields (Allam et al. 2021; Morugán-Coronado 
et al. 2020). In these situations, alternative conservation 
tillage practices such as zone or strip tillage may represent 

a better option to manage the cover crops under reduced 
tillage (Drury et al. 2006, 2012).

We found that the large variation in the response of soil 
 N2O emissions to cover crops and diversified crop rotations 
could be well predicted by specific soil and climatic factors. 
Accordingly, our results provide a roadmap of the regions 
of the world in which the adoption of specific conservation 
agriculture practices will help mitigate climate change more 
efficiently.
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