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Abstract 
Background and aims Information on the effect of 
conservation agriculture (CA) on N availability in 
soil is inconsistent. Estimation of available N using 
conventional analytical methods may not be suitable 
due to changes in N forms in soils under CA. The 
study aimed to assess the impact of CA on N avail-
ability in soil and to evaluate estimation methods for 
plant-available N under CA.
Methods A field experiment was conducted involving 
fifteen treatments comprising three tillage operations 
and five rice residue + nutrient management practices 

with three cropping systems [rice-maize-cowpea 
(RMaC), rice-mustard-black gram (RMuB) and rice-
cauliflower-rice (RCR)] in alluvial soils of the lower 
Indo-Gangetic Plains. Availability of N in surface soil 
layers was assessed using neutral phosphate buffer (PB), 
calcium chloride (CC), sodium bicarbonate (SB) and 
alkaline permanganate (PP) methods after three years.
Result The amount of available N extracted by the 
four methods followed the order SB > PB > PP > CC. 
Zero tillage with 50%residue + 100%NPK and 
100%residue + 75%NPK resulted in ~ 3 to 20% and 3 
to 12%, respectively, higher available N in soils over 
other CA treatments for RMaC and RMuB cropping 
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systems. In contrast, reduced tillage with 50%resi-
due + 100%NPK had ~ 1 to 13% higher available N for 
RCR cropping system.
Conclusion This work offers choice of efficient CA 
practices with higher plant available N in soils. Novel 
multi-criteria-based technique identified PB as the 
best method in estimating available N in soils under 
CA with rice-based cropping systems.

Keywords Available N · Phosphate buffer · 
Potentially mineralizable N · Residue management · 
Tillage operation

Introduction

Conservation agriculture (CA) is one of the resource 
conservation strategies which minimizes the impact of 
farming on the environment (Nayak et  al. 2022; Sau-
rabh et al. 2021) and provides yield benefits in a sustain-
able manner over the conventionally managed systems 
(Kassam et  al. 2019; Wu et  al. 2021). It entails three 
principles namely, (i) limited or zero soil disturbances 
(i.e., minimum tillage or no-tillage), (ii) increased crop 
residue retention to ensure maximum soil cover, and 
(iii) diverse crop rotation (Page et al. 2020; Patel et al. 
2023). Adoption of CA in intensive rice-based cropping 
systems in the Indo-Gangetic Plains (IGP) of South 
Asia is increasing (Kassam et  al. 2019). Non-puddled 
transplanting of rice with zero tillage (ZT) or reduced 
tillage (RT) is proven to be a novel crop establish-
ment practice designed for CA (Das et al. 2020; Kader 
et al. 2022). Crop residue retention or incorporation at 
the soil surface under CA increases soil organic C and 
conserves soil and water for sustaining crop produc-
tion (Kumar et al. 2023). This also curbs the menace of 
crop residue burning and attendant losses of C and N, 
native soil organic matter and microbial activity (Alam 
et  al. 2020; Saurabh et  al. 2021). Therefore, physical, 
chemical and biological soil properties are reportedly 
improved with ZT or RT, residue management and 
diversified crop rotation under CA (Faiz et  al. 2022; 
Kumar et al. 2021; Nandan et al. 2019).

As much as 90–95% of soil N is in organic forms 
(Liu et al. 2018), and their dynamics and transforma-
tions largely depend on addition of organics by differ-
ent farming practices (Mukherjee et al. 2023; Sarkar 
et  al. 2023). Microbial decomposition of crop resi-
dues releases plant nutrients (Khan et  al. 2024). CA 

regulates N cycling (Badagliacca et  al. 2021; Topa 
et al. 2021) by influencing mineralization and immo-
bilization in soil (Alam et  al. 2020; Bhattacharyya 
et al. 2019; Verhulst et al. 2013). This, in turn, causes 
a change in total, inorganic and organic N fractions 
with CA over CT (Kumar et  al. 2021; Parihar et  al. 
2018; Verhulst et  al. 2013). Repeated disturbance 
to soils with CT and incorporation of crop residues 
along with basal N fertilization, higher soil temper-
ature and higher microbial activity may account for 
higher N availability during the early years of culti-
vation (Badagliacca et  al. 2021; Yadvinder-Singh 
et al. 2015). However, the depletion of available N in 
soil over time under CT suggests that either the read-
ily mineralizable N fraction is reduced in successive 
years or there are greater N losses with CT over CA 
(Alam et al. 2020). Although ZT or RT is effective in 
reducing surface losses of N, effects of ZT/RT with 
and without residue retention or incorporation on N 
availability in soils are ambiguous (Yadvinder-Singh 
et al. 2015; Verhulst et al. 2013). Despite, many stud-
ies comparing the impact of CA on N cycling, N 
utilization and crop productivity (Alam et  al. 2020; 
Bhattacharyya et al. 2019; Jat et al. 2018; Kader et al. 
2022; Nayak et  al. 2022; Wu et  al. 2021), limited 
information is available regarding the impact of dif-
ferent intensities of CA including varied residue and 
nutrient management practices for different cropping 
systems on N availability in soil.

Several methods, such as alkaline permanganate 
(Subbiah and Asija 1956), hydrochloric acid or sul-
phuric acid (Peterson et  al. 1960), alkaline calcium 
hydroxide (Prasad 1968), hot-water (Keeney and 
Bremner 1966) and cold dilute barium hydroxide 
solution (Setatou and Simonis 1996) are commonly 
used for estimating available N status in conven-
tionally managed soils. However, their suitability in 
organic-rich CA soils has received limited attention. 
Availability of N in soil was also estimated consider-
ing the amount of N mineralized during incubation of 
soil at 30 °C under field moisture conditions (Keeney 
and Nelson 1982; Mukherjee et  al. 2021a), since N 
estimated by this method is correlated with plant 
uptake and crop yield (Mukherjee et al. 2021a). How-
ever, this method takes several weeks to determine 
available N content in soil. Availability of carbona-
ceous materials in soils under CA enriches potentially 
mineralizable N (PMN) fractions, which contribute 
nearly 40–60% of the organic N. As PMN fractions 
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are primarily composed of easily mineralizable pro-
tein or protein-like N compounds, these are vulner-
able to quick mineralization for producing available 
N for plant uptake (da Silva et  al. 2019; Saha and 
Mandal 2011). Moreover, lignin, tannin, quinone-
bound protein-like compounds, amino sugars and 
other organic N complexing with polyvalent cations 
like Fe and Al may contribute to plant N availability 
in soil (da Silva et  al. 2019). Conventional methods 
for estimating plant available N in soil measure only 
the labile soil N including the most dynamic frac-
tions, which hardly include PMN fractions in organic-
rich soils (da Silva et  al. 2019; Liptzin et  al. 2023; 
Mukherjee et al. 2021b). Therefore, we hypothesized 
that methods typically used for estimating avail-
able N in soils under conventional systems may not 
be equally applicable in soils under CA. Several N 
extraction methods like 1/15 M phosphate buffer (PB; 
Matsumoto et  al. 2000a), 0.01 M calcium chloride 
(CC; Appel and Mengel 1992) and 0.01 M sodium 
bicarbonate (SB; Bradford 1976) are expected to have 
the capacity to extract protein-like and easily mineral-
izable organic N compounds (e.g., amino acid, amino 
sugar, hydrolyzable ammonium) from soils. Most of 
these methods extract easily mineralizable N through 
ion-exchange or solubilization mechanisms (Matsu-
moto and Ae 2004). An examination of these meth-
ods (PB, CC and SB) for estimating plant available 
N content in soils under CA as compared to the most 
common method i.e., alkaline permanganate method 
(PP; Subbiah and Asija 1956) warrants further exami-
nation. Therefore, in the present study, after three 
years of continuous CA under three rice-based crop-
ping systems in the alluvial soil of the lower IGP of 
eastern India, we assessed: (i) effects of CA on N 
availability in soils, and (ii) the suitability of methods 
for estimating available N in soils for cowpea, black 
gram, and rice grown under CA.

Materials and methods

Study site characteristics

A field experiment was initiated in the Kharif (rainy) 
season of 2018 at Balindi Farm under the Centre for 
Advanced Agricultural Science and Technology on 
Conservation Agriculture, Bidhan Chandra Krishi 
Viswavidyalaya (22° 57’ 46” N, 88° 31’ 48” E; 9.75 

m above mean sea level). The site experiences sub-
tropical humid climate with an average annual rainfall 
of 1560 mm and mean annual minimum and maxi-
mum temperatures of 21.3 and 33.2 °C, respectively. 
Its soil was classified as alluvial, Inceptisol (Soil Sur-
vey Staff 2003) with clay loam texture. Bulk density 
[core sampling method (Blake and Hartge 1986)], pH 
and electrical conductivity [in 1:2.5 (w/v) soil-water 
suspension (Jackson 1973)], 0.167 M  K2Cr2O7 oxi-
dizable organic C (Walkley and Black 1934), alka-
line 0.32%  KMnO4 extractable N (Subbiah and Asija 
1956), 0.5 M  NaHCO3 (pH 8.5) extractable P (Olsen 
et al. 1954) and neutral 1.0 M  NH4 acetate extractable 
K (Hanway and Heidel 1952) content of the initial 
soil at 0–0.20 m depth were 1.52 g  cm−3, 7.4, 0.24 dS 
 m−1, 7.8 g  kg−1, 222 kg  ha−1, 25 kg  ha−1 and 297 kg 
 ha−1, respectively.

Experimentation

The field experiment was conducted with three differ-
ent rice-based cropping systems namely, rice-maize-
cowpea (RMaC), rice-mustard-black gram (RMuB) 
and rice-cauliflower-rice (RCR) in a split-plot design. 
Each cropping system had three main treatments of 
tillage intensity viz., conventional tillage (CT), zero 
tillage (ZT) and reduced tillage (RT). Every main 
treatment was subdivided into five sub-treatments 
consisting of a combination of inorganic N, P and K 
fertilization and rice residue retention at various rates 
(Table  1). This resulted in fifteen (3 × 5 = 15) tillage 
and residue + nutrient combinations with each crop-
ping system with a plot size of 10  m × 20  m each, 
with three replications.

Only on completion of three cycles (years) of cul-
tivation of the systems with those 15 treatments, we 
took observations for the present study with the prem-
ise that by this time, the systems attained a quasi-
equilibrium state and bear the signature of a true CA 
in respect of its N-cycling (Meena et al. 2015; Tim-
sina et al. 2006). As such, we claimed that the meth-
ods tested for estimating available N in soils actually 
captured the typical N-dynamics in soils under a true 
CA system. The use of rice-based systems also helped 
because it not only shows a minimum effect towards 
the imposed treatments but also is quite efficient in 
obscuring the system’s small and temporal variations 
due to prolonged submergence for rice cultivation. 
Again, we retained only the residues of Kharif rice 



 Plant Soil

1 3
Vol:. (1234567890)

(because of socio-economic compulsion of the farm-
ers of the region) for the last three years for all the 
three cropping systems following farmers’ practices. 
To perceive the maximum effect of CA on N mineral-
ization in the soil, as well as ascertaining a suitable N 
availability index, we sampled our experimental soils 
from the fields after harvesting of the Rabi crops for 
necessary analysis. Succeeding crops viz., cowpea, 
black gram and summer (Boro) rice were chosen as 
the test crops. Details of the crop management prac-
tices of the test crops under three cropping systems 
are described in Table 2.

Soil and plant sampling

Soil samples were collected at 0–0.20 m depth after 
harvesting of the third Rabi crop i.e., after maize for 
RMaC, mustard for RMuB and cauliflower for RCR 
cropping systems from each of the 15 selected tillage 
and residue + nutrient management treatments with 
three replications. Soil samples were then air-dried, 
passed through a 2-mm nylon sieve and subsequently, 
stored in polyethylene bottles for future analysis. 
Plant samples (grain and stalk) of succeeding crops, 
cowpea, black gram and Boro rice were collected at 
harvest from RMaC, RMuB and RCR cropping sys-
tems, respectively. Plant samples were washed with 

running tap water followed by 0.01 M HCl and dis-
tilled water and dried in a hot-air oven at 60  °C for 
48 h. Dried plant samples were ground to fine powder 
using a mechanical grinder for further analysis. Grain 
yield was recorded for the studied crops at harvest.

Analysis of soil and plant samples

The soil samples were extracted for available N by 
four extraction methods viz., 1/15 M phosphate buffer 
(PB; Matsumoto et al. 2000a; Mukherjee et al. 2021a, 
b), 0.01 M calcium chloride (CC; Appel and Mengel 
1992) and 0.01 M sodium bicarbonate (SB; Brad-
ford 1976; Michrina et al. 1982) and alkaline 0.32% 
 KMnO4 (PP; Subbiah and Asija 1956) (Supplemen-
tary information Table  S1). The first three methods 
(PB, CC and SB) included inorganic N plus PMN 
fractions composed of protein-like and easily miner-
alizable organic N compounds such as amino acid, 
amino sugar, and hydrolyzable ammonium (Appel 
and Mengel 1992; Bradford 1976; Matsumoto et  al. 
2000a). Inorganic N  (NH4

+-N +  NO3
−-N) in these 

extracts was estimated using 2 M KCl solution at 
1:10 (extract to KCl solution v/v) ratio. The  NH4

+-N 
was estimated by steam distillation with a mild-
oxidizing agent (MgO) in the Kjeldahl distillation 
unit and  NO3

−-N by reduction with Devarda’s alloy 

Table 1  Treatments of tillage, crop residue and fertilizer used in the experiment

NPK recommended dose of N, P and K fertilizers using urea and customized 10.0-11.4-21.7 (N-P-K) grade fertilizer
*Rice residue retention for the succeeding Rabi crops

Cropping systems Tillage intensities Residue* doses Nutrient doses Treatment symbols

Rice-maize-cowpea
Rice-mustard-black gram
Rice-cauliflower-rice

Conventional tillage:
two primary and two secondary tillage opera-

tions

0% residue 100% NPK CT + 0R + 100NPK
100% residue 50% NPK CT + 100R + 50NPK
100% residue 75% NPK CT + 100R + 75NPK
50% residue 100% NPK CT + 50R + 100NPK
50% residue 75% NPK CT + 50R + 75NPK

Reduced tillage:
one primary and one secondary tillage opera-

tions

0% residue 100% NPK RT + 0R + 100NPK
100% residue 50% NPK RT + 100R + 50NPK
100% residue 75% NPK RT + 100R + 75NPK
50% residue 100% NPK RT + 50R + 100NPK
50% residue 75% NPK RT + 50R + 75NPK

Zero tillage:
without any primary and secondary tillage 

operations

0% residue 100% NPK ZT + 0R + 100NPK
100% residue 50% NPK ZT + 100R + 50NPK
100% residue 75% NPK ZT + 100R + 75NPK
50% residue 100% NPK ZT + 50R + 100NPK
50% residue 75% NPK ZT + 50R + 75NPK
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(Keeney and Nelson 1982). Amount of this inorganic 
N was then subtracted from PB, CC and SB extract-
able N fractions and the remaining amounts (mostly 
PMN including protein-like and easily mineraliz-
able organic N fractions) were considered as the PB, 
CC and SB extractable available N in soils, respec-
tively. Total N and easily mineralizable fractions of 
soil organic N, such as amino acid, amino sugar and 
hydrolyzable ammonium, were analyzed follow-
ing the standard procedures (Bremner and Keeney 
1965; Stevenson 1996). Inorganic N content in soils 
was estimated using 2 M KCl solution at 1:10 (soil 
to solution w/v) ratio following the same procedure 
as mentioned earlier. The amount of N fractions in 
soils was expressed in kg  ha−1, which was obtained 
by multiplying soil N content with the depth and 
bulk density of the experimental soils. Nitrogen con-
centration in stalk and grain was analyzed by micro-
Kjeldahl digestion and distillation method (Page et al. 
1982). Uptake of N was calculated as the product 
of N concentration and dry weight of plant biomass 
(stalk and grain).

Suitability of methods for extraction of available N 
in soil

To identify the most effective method(s) for estima-
tion of available N in soil a multi-criteria assessment 
of the N extraction methods was used, based on the 
criteria below:

Criteria 1: Relationships of the amount of avail-
able N extracted by different methods and plant 
parameters (grain and stalk N contents, N uptake 
by crop and crop yield) by correlation study, which 
is the conventional way of screening a suitable 
method; Criteria 2: Relationships of the amount of 
N extracted by different methods and easily miner-
alizable organic N fractions (hydrolyzable N frac-
tions viz., amino acid, amino sugar and hydrolyz-
able ammonium); Criteria 3: Relationships of the 
amount of N extracted by different methods and 
inorganic N;  Criteria 4: Responsiveness of dif-
ferent methods to total soil N content computed 
through linear regression model between total N 
(kg  ha-1) of different management practices and the 
amount of N extracted by the methods compared 
(kg  ha-1);  Criteria 5: The extent of variability 
among the methods was calculated from the coef-

ficient of variation (%) i.e., CV = SD/mean×100, 
where SD is the standard deviation of the extract-
able N by any method. Sensitivity analysis (S) was 
also done for all the methods by computing the 
ratio between the maximum and minimum values 
recorded with each method.

Finally, we assessed suitability of different meth-
ods for extraction of available N in soil under CA by 
considering all the above criteria. The corresponding 
values of all five criteria indicated a particular cri-
terion’s relative contribution to finding the suitable 
method(s). The methods were then ranked from 1 to 
4 by scoring for the best choice as 1. For example, the 
methods showed the highest correlation coefficients 
for criteria 1 to 3, the highest slope value (m) for cri-
teria 4 and the highest ‘CV’ and ‘S’ values for criteria 
5 were ranked the highest i.e., scored 1. We calcu-
lated the mean score of the five criteria to examine 
the suitability of the methods for individual cropping 
system. Overall, suitability of methods was examined 
from the mean score of the five criteria across crop-
ping systems.

Statistical analysis

The amount of available N, inorganic N, easily min-
eralizable organic N fractions: amino acid, amino 
sugar and hydrolyzable ammonium in soils and 
plant parameters such as grain and stalk N contents, 
N uptake by crop and crop yield (response vari-
ables) were subjected to analysis of variance using 
the generalized linear model on split-plot design to 
determine impact of tillage, residue + nutrient, crop-
ping system and their interactions (fixed effects). 
Differences among tillage operations, residue + nutri-
ent treatments and cropping systems and tillage plus 
residue + nutrient combinations were compared at 5% 
probability level through Duncan’s multiple range 
test using Statistical Package for the Social Sciences 
(SPSS) software (version 20.0). Simple linear cor-
relations of available N content in soils estimated by 
different methods were performed with plant param-
eters, easily mineralizable organic N fractions and 
inorganic N. Linear regression equations taking total 
N as the fixed factor and the amount of available N by 
different methods as the random variables were devel-
oped. To delineate the variation and contribution of 
available N content in soils estimated by different 



Plant Soil 

1 3
Vol.: (0123456789)

methods to crop performance and easily mineraliz-
able N fractions, principal component analysis (PCA) 
was executed using Statistical Tool for Agricultural 
Research (STAR) package (version: 2.0.1; http:// bbi. 
irri. org/ train ings/ biom2 06) created in the R software 
interface (R Core Team 2021).

Results

Nitrogen availability in soils

N extractability of different methods

Plant available N contents in soils varied significantly 
(p < 0.05) with N extraction methods. The content 
of PB, CC, SB and PP extractable N in surface soil 
(0–0.20  m depth) varied from 300 to 369, 242 to 
314, 324 to 392 and 273 to 337 kg  ha−1 with mean 

values of 334, 277, 354 and 304 kg  ha−1, respectively, 
across tillage operations, residue + nutrient manage-
ment practices and cropping systems after three years 
(Fig.  1). On average, the order of the methods with 
respect to the amount of available N extraction was 
SB > PB > PP > CC.

Effect of CA on N availability in soils

Tillage operations had a significant (p < 0.05) influ-
ence on available N content in soils. ZT and RT were 
associated with a higher amount of available N in 
soils than CT under the RMaC system. In contrast, 
ZT was associated with the most available N among 
the tillage operations under the RMuB system. In 
the case of RCR system, RT had higher available N 
than CT or ZT (Supplementary information Fig. S1). 
Average magnitude of increase in available N con-
tent with ZT and RT was ~ 6% and 2%, respectively, 

Fig. 1  Amount of available N in soils (0–0.20 m depth) with 
different cropping systems as extracted by the four methods 
selected for comparison. Columns labeled with different low-
ercase letters are significantly different by Duncan’s multiple 
range test (p = 0.05). The symbol cross (×) indicates mean 

value; horizontal line in the box indicates median; length of 
the box indicates interquartile range; upper and lower whisk-
ers indicate the extent of maximum and minimum values of the 
range of the data set, respectively

http://bbi.irri.org/trainings/biom206
http://bbi.irri.org/trainings/biom206
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over CT across RMaC and RMuB systems. Contra-
rily, in RCR system, RT had ~ 3 and 4% higher avail-
able N over CT and ZT, where the effect of CT and 
ZT was at par. Residue + nutrient management prac-
tices also significantly (p < 0.05) altered N availabil-
ity in soils. Among the residue + nutrient treatments, 
50R + 100NPK followed by 100R + 75NPK were 
associated with higher amount of available N (~ 2 
to 9 and 3 to 7% higher, respectively, over the oth-
ers) across the tested methods and cropping systems. 
The effect of cropping system was nonsignificant on 
available N content in soils. On average, available N 
content was 319, 312 and 321  kg  ha−1 with RMaC, 
RMuB and RCR cropping systems, respectively.

On average, ZT + 50R + 100NPK had ~ 3 to 
20% higher available N in soils than the other CA 
treatments with RMaC and RMuB systems fol-
lowed by ZT + 100R + 75NPK treatment (~ 3 to 
12% higher) (Fig.  2). In the case of RCR system, 
RT + 50R + 100NPK retained ~ 1 to 13% higher avail-
able N in soil among the CA treatments. In contrast, 
CT + 100R + 50NPK recorded the lowest value of 
available N among the CA treatments across crop-
ping systems (~ 296 kg  ha−1; 3 to 13% lower than the 
others).

Suitability of methods for assessment of available N 
in soils

Relationships between available N and plant 
parameters

Different levels of CA practices improved the N 
uptake by cowpea, black gram, and Boro rice by 23, 
23 and 6%, respectively over CT after three years of 
experimentation. The productivity of cowpea and 
black gram was increased by 24 and 27%, respec-
tively with CA treatments, while that of Boro rice was 
dropped by 4% of the CT (Supplementary information 
Figs. S2 and S3). Available N content in soils, which 
was extracted by the four different methods, showed 
significant relationships with plant parameters of 
cowpea, black gram and Boro rice grown in RMaC, 
RMuB and RCR cropping systems, respectively. The 
values of correlation coefficients indicated that PB 
had the strongest relationships with grain and stalk 
N concentrations, N uptake and grain yield of differ-
ent crops (Table 3). Next to PB, PP showed stronger 

relationships with the plant parameters followed by 
CC and SB in decreasing order of magnitude.

Relationships between available N and mineralizable 
soil N fractions

The amount of mineralizable N fractions (viz., 
hydrolyzable N, amino acid, amino sugar and 
hydrolyzable ammonium) and inorganic N was sig-
nificantly higher (~ 2, 7, 13, 10 and 16%, respec-
tively) with different CA practices over the conven-
tional one (Supplementary information Fig.  S5). 
As extracted by different methods, available N con-
tent showed significant positive relationships with 

Fig. 2  Effect of 15 treatments including conservation agricul-
ture on available N content in soils across extraction methods 
under different cropping systems. CT, conventional tillage; 
RT, reduced tillage; ZT, zero tillage; R, residue; NPK, recom-
mended dose of N, P and K fertilizers; columns labeled with 
different lowercase letters are significantly different by Dun-
can’s multiple range test (p = 0.05). The error bar represents 
the standard error of the mean
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the amount of these mineralizable N fractions and 
inorganic N in soils (Table 4). Among the methods 
of available N extraction, PB secured the strong-
est correlations with the mineralizable N fractions 
under all the cropping systems, followed by PP. In 

contrast, such relationships involving SB and CC 
were weak. On the other hand, PP established the 
strongest relationships with the inorganic N fol-
lowed by PB, SB and CC in decreasing order of 
magnitude for all the cropping systems (Table 4).

Table 3  Linear correlation 
coefficients (r) between 
the amount of available 
N in soils as estimated by 
different methods and plant 
parameters (grain, stalk N, 
N uptake, grain yield) with 
different cropping systems

* and ** indicate 
correlations are significant 
at the 0.05 and 0.01 levels, 
respectively

Methods Grain N Stalk N N uptake Grain yield

Rice-maize-cowpea
  Phosphate buffer 0.88** 0.81** 0.95** 0.93**
  Calcium chloride 0.77** 0.85** 0.74** 0.66**
  Sodium bicarbonate 0.72** 0.70** 0.75** 0.71**
  Potassium permanganate 0.85** 0.81** 0.90** 0.86**

Rice-mustard-black gram
  Phosphate buffer 0.79** 0.65** 0.89** 0.88**
  Calcium chloride 0.72** 0.64* 0.61* 0.59*
  Sodium bicarbonate 0.61* 0.66** 0.66** 0.63*
  Potassium permanganate 0.80** 0.79** 0.82** 0.77**

Rice-cauliflower-rice
  Phosphate buffer 0.93** 0.91** 0.92** 0.83**
  Calcium chloride 0.69** 0.71** 0.80** 0.80**
  Sodium bicarbonate 0.78** 0.75** 0.77** 0.69**
  Potassium permanganate 0.92** 0.92** 0.92** 0.83**

Table 4  Linear correlation coefficients (r) between the amount of available N in soils as estimated by different methods with the 
amount of easily mineralizable N fractions and inorganic N in soils with different cropping systems

* and ** indicate correlations are significant at the 0.05 and 0.01 levels, respectively

Methods Major contributory organic N pools to plant N availability Inorganic N

Hydrolyzable N Amino acid Amino sugar Hydrolyzable 
ammonium

Rice-maize-cowpea
  Phosphate buffer 0.90** 0.89** 0.88** 0.82** 0.92**
  Calcium chloride 0.77** 0.58* 0.74** 0.60* 0.76**
  Sodium bicarbonate 0.74** 0.67** 0.81** 0.66** 0.80**
  Potassium permanganate 0.87** 0.83** 0.89** 0.79** 0.96**

Rice-mustard-black gram
  Phosphate buffer 0.65** 0.90** 0.89** 0.87** 0.86**
  Calcium chloride 0.54* 0.46 0.66** 0.62* 0.69**
  Sodium bicarbonate 0.41 0.64* 0.79** 0.70** 0.86**
  Potassium permanganate 0.61* 0.77** 0.84** 0.81** 0.93**

Rice-cauliflower-rice
  Phosphate buffer 0.82** 0.93** 0.80** 0.83** 0.94**
  Calcium chloride 0.85** 0.61* 0.74** 0.69** 0.60*
  Sodium bicarbonate 0.72** 0.68** 0.70** 0.70** 0.73**
  Potassium permanganate 0.81** 0.91** 0.77** 0.83** 0.97**
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Responsiveness of available N extraction methods 
to total soil N

We calculated the responsiveness of N extraction 
methods of available N to total N in soils (mean 
total N content was 2643, 2702 and 2622  kg  ha−1 
for RMaC, RMuB and RCR systems, respectively) 
following the linear regression models. Among the 
methods, PB and PP showed higher responses to 
total N, as evident from the greater slope of the lin-
ear regression lines, whereas such responses were 
weak for SB and CC for all the cropping systems 
(Fig. 3).

Extent of variability and sensitivity of available N 
extraction methods

Among the four methods, PB and PP showed higher 
CV in extracting soil available N under CA practices 
(Fig. 4). Of the two, PB had the highest values of CV 
with RMaC (5.2) and RCR (5.2) cropping systems; 
whereas PP had it with RMuB (5.4) system. In the case 
of sensitivity analysis, all the methods showed a similar 
range of values (1.1 to 1.2) with no significant variation 
among the methods with all the cropping systems.

Principal component analysis

Results of the PCA showed that the first three prin-
cipal components accounted for ~ 87% of the total 
variation in soil available N extracted by differ-
ent methods, crop parameters and N fractions in 
soils under CA practices (Supplementary informa-
tion Table S2; Fig. 5). The first principal component 
explained ~ 73% of the total variation with the highest 
loading on PB; while the second and third principal 
component explained only ~ 7 and 6%, variability and 
the highest loading was on SB and CC, respectively.

Ranking of available N extraction methods

Ranking of available N extraction methods based on 
their performance in each suitability criterion showed 
that PB had the lowest mean score for all the crop-
ping systems and ranked first among the four methods 

Fig. 3  Responsiveness of extractants to total N in soils com-
puted through linear regression model under different crop-
ping systems. PB, phosphate buffer; CC, calcium chloride; 
SB, sodium bicarbonate; PP, potassium permanganate; RMaC, 
rice-maize-cowpea; RMuB, rice-mustard-black gram; RCR, 
rice-cauliflower-rice; NS indicates non-significant regression
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(Table 5); while PP method was the next best in the 
ranking. Overall, the order of suitability of methods 
for estimating available N in soils under CA was 
PB > PP > SB > CC.

Discussion

Efficiency of methods for extraction of available N in 
soils under CA

Available N extraction methods differed in estimat-
ing N availability in soils due to the differences in 
their chemical composition (associated ions and 
pH), mechanism of extraction and the nature of N 
compounds present in soil. Application of fertilizer 
N and addition of organic crop residue under CA 
for three years might form protein-like organic N 
compounds in soils (Li et al. 2019). This was evi-
dent by an increase (~ 10 to 14%) in potentially 
mineralizable (hydrolyzable) organic N fractions 
viz., amino acid, amino sugar and hydrolyzable 
ammonium in soils with CA as compared to CT 
(Supplementary information Fig.  S5). Among the 

methods, SB extracted the highest amount of N 
followed by PB > CC > PP due to its (SB) unique 
extraction mechanisms: firstly, reactions of bicar-
bonate ions with ions/compounds, which physically 
protect the protein-like compounds for release of 
organic N (MacLean 1964) and secondly, alkaline 
solubilization of hydrolyzable organic N including 
amino acids and hydrolyzable proteins (Michrina 
et  al. 1982). Next to SB, PB could extract N effi-
ciently from the potentially mineralizable organic 
N fractions of organic-rich CA soils, because phos-
phate ions react with physically protected organic 
N compounds (Matsumoto and Ae 2004; Mukher-
jee et  al. 2021b) and result in a higher value of 
extractable N. A lower extraction of PP might be 
ascribed to its inefficiency in extraction of soil N, 
since it failed to extract protein-like N compounds 
bound to lignin and tannin or protected by metal-
organic matter complexes from soils under CA (da 
Silva et al. 2019; Mukherjee et al. 2021a; Saha and 
Mandal 2011; Stockdale et al. 2002). It (PP) could 
only extract easily oxidizable organic N compounds 
like amino acids and amino sugars (Sahrawat and 
Burford 1982). Due to lack of strong N extraction 

Fig. 5  Evaluation of differ-
ent available N extraction 
methods for explaining 
crop performance and 
contributory N fractions by 
principal component analy-
sis biplot. PB, 1/15 M phos-
phate buffer; CC, 0.01 M 
calcium chloride; SB, 
0.01 M sodium bicarbo-
nate; PP, 0.32% potassium 
permanganate; Total.N, 
total nitrogen; Inorg.N, 
inorganic nitrogen; Hy.N, 
hydrolyzable nitrogen; AA, 
amino acid; AS, amino 
sugar; Hy.Am, hydrolyzable 
ammonium; Crop.Y, crop 
yield; Grain.N, N concen-
trations in grain, N.Uptake, 
nitrogen uptake by plants; 
PC, principal component
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mechanism involving ion exchange, chelation or 
solubilization, PP extracted a lower amount of N 
than SB or PB (Mukherjee et al. 2021a, b). On the 
other hand, CC also extracted N from the PMN 
fractions following a similar extraction mecha-
nism like SB or PB. However, CC recorded a lower 
value than the others (Fig.  1), as chloride has a 
lower affinity than phosphate and bicarbonate ions 
for disruption of the physical barrier created by 
metal-organic matter complexes and a lower capac-
ity than PP to release easily oxidizable organic N 
in the solution (Michrina et al. 1982).

Nitrogen availability in soils under CA

Higher N availability in soils with ZT or RT in RMaC 
and RMuB systems was in line with the observations 
of many researchers, who reported that ZT increased 
available N content in soils over CT in different crop-
ping systems and climatic conditions (Jat et al. 2018; 
Lv et  al. 2023; Nandan et  al. 2019; Saurabh et  al. 
2021; Wu et al. 2021). ZT or RT involved minimum 
disturbance in soils, particularly in the surface lay-
ers; therefore, minimized loss of soil organic mat-
ter (Ghosh et  al. 2023) and subsequently resulted in 

Table 5  Ranking of the methods for estimation of available N in soils based on the suitability criteria for different cropping systems 
under conservation agriculture

Criteria 1, relationships with plant parameters; Criteria 2, relationships with mineralizable N fractions; Criteria 3, relationships with 
inorganic N; Criteria 4, responsiveness to soil  total N; Criteria 5, magnitude of variability (CV%) and sensitivity i.e., maximum/
minimum with each method

Methods Criteria 1 Criteria 2 Criteria 
3

Criteria 4 Criteria 5 Mean 
score

Rank

Rice-maize-cowpea
  Phosphate buffer 1 1 2 1 1 1.2 1
  Calcium chloride 3 4 4 4 2 3.4 4
  Sodium bicarbonate 4 3 3 3 3 3.2 3
  Potassium perman-

ganate
2 2 1 2 2 1.8 2

Rice-mustard-black gram
  Phosphate buffer 1 1 2 1 2 1.2 1
  Calcium chloride 3 4 3 3 3 3.2 3
  Sodium bicarbonate 3 3 2 4 4 3.2 3
  Potassium perman-

ganate
2 2 1 2 1 1.6 2

Rice-cauliflower-rice
  Phosphate buffer 1 1 2 1 1 1.2 1
  Calcium chloride 2 3 4 3 3 3.0 3
  Sodium bicarbonate 3 4 3 2 4 3.2 4
  Potassium perman-

ganate
1 2 1 1 2 1.4 2

Across different cropping systems
  Methods Mean score Final mean score Final rank

Rice-maize-cowpea Rice-mustard-black 
gram

Rice-cauliflower-rice

  Phosphate buffer 1.2 1.2 1.2 1.2 1
  Calcium chloride 3.4 3.2 3.0 3.2 3
  Sodium bicarbonate 3.2 3.2 3.2 3.2 3
  Potassium perman-

ganate
1.8 1.6 1.4 1.6 2
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higher total and available N content (Mattila et  al. 
2023; Page et  al. 2020; Parihar et  al. 2018; Yadvin-
der-Singh et  al. 2015). This may primarily be due 
to the physical protection of soil organic matter in 
aggregates with ZT (Ghosh et al. 2023; Nandan et al. 
2019), which maintained and/or increased N con-
tent by reducing their loss through decomposition 
and erosion and by sequestering N in soils (Nandan 
et  al. 2019; Page et  al. 2020). Repeated tillage to 
soil under CT, particularly at the surface layer with 
either residue removal or incorporation accounted 
for higher available N during the initial years (Topa 
et  al. 2021). Loss of excess N to the environment 
after plant removal in subsequent years resulted in 
lower N availability in soils under CT (Verhulst et al. 
2013). By contrast, under the RCR system, RT had 
a higher value of available N than CT or ZT. Exclu-
sion of legumes from the cropping system might be 
the reason for such anomaly. Integration of legumes 
in crop rotation not only offers a diverse diet to soil 
microorganisms, but also explores different soil lay-
ers for nutrient acquisition that have been leached 
to deeper layers, apart from fixing atmospheric N 
into soil (Hazra et al. 2018; Page et al. 2020). These 
helped RMaC and RMuB systems to create a favora-
ble micro-environment for supplying higher amounts 
of available N with any degree of conservation-tillage 
(ZT or RT) than that with CT.

While comparing the effect of residue + nutrient 
management, the treatments comprising of 100% crop 
residue may be subjected to short-term immobiliza-
tion of N, especially in the initial years and subse-
quently reduced N availability in surface soils (Singh 
et al. 2021; Topa et al. 2021; Yadvinder-Singh et al. 
2015). Three years of CA practices with 50%NPK 
probably was not sufficient to reverse this depletion 
in soil N availability, so, 100R + 50NPK had the low-
est available N. Treatment receiving only 100%NPK 
without crop residue resulted in a greater available 
N immediately after its application and could not 
sequester the extra available N in soil system after 
crop removal (Page et  al. 2020; Sithole and Mag-
waza 2019). In the case of 50R + 100NPK, amount of 
residue was not high enough to hamper N availabil-
ity in soils due to immobilization; but could help to 
minimize the loss of excess available N present in soil 
after plant uptake. Subsequent N mineralization of 
organic crop residue and recommended N fertilizers 
helped achieve the highest N-availability among the 

residue + nutrient treatments for all the cropping sys-
tems as estimated by PB, SB, CC, and PP methods.

Distribution of soil organic matter and nutrients 
in soils under CA differs from that under CT as till-
age, residue management and crop rotation increase 
the storage of nutrients and their availability at sur-
face soil (Jat et al. 2018; Nandan et al. 2019; Saurabh 
et al. 2021; Ye et al. 2019). Coupling with a greater 
input of nutrients through crop residue plus recom-
mended fertilizers under diversified crop rotation, CA 
could increase N  availability in soils relative to CT. 
Although N may be immobilized in soil, the other 
losses of N viz., leaching, runoff and volatilization 
loss from soils are restricted considerably under CA 
(Michael et al. 2021; Nayak et al. 2022). These helped 
ZT + 50R + 100NPK or ZT + 100R + 75NPK to retain 
the highest available N among the CA treatments, 
whereas CT + 100R + 50NPK retained the lowest. Jat 
et  al. (2018) reported a similar increase in available 
N content in soils (33 and 68%, respectively) under 
CA-based rice-wheat-maize and maize-wheat-mung 
bean cropping systems over the conventional agricul-
tural practices after four years in reclaimed sodic soil 
of north-west India. Similar increase in N availability 
in soils with attendant increase in crop yield and N 
use efficiency under CA (Supplementary Information 
Figs. S3 and S4) was also reported by others from the 
sub-tropical Brahmaputra Floodplain agroecological 
zone (Kader et al. 2022).

Selection of suitable method(s) for estimation of 
available N in soils under CA

Relationships of available N in soils estimated by dif-
ferent methods with crop parameters may be linked 
to their chemical composition and nature of the 
extracted compounds (Matsumoto et  al. 2000a, b; 
Mukherjee et al. 2021b). Matsumoto and Ae (2004); 
Matsumoto et  al. (2000b) reported that PB extract-
able organic N (PEON) compounds are less polymer-
ized, easily mineralizable and protein-like in nature. 
PB extractable N also accounts for PMN, which con-
tributes a major share to plant-available N fractions 
in soils rich in organic matter (da Silva et  al. 2019; 
Matsumoto et  al. 2000b). Further, Higuchi (1982) 
and Senwo and Tabatabai (1998) demonstrated that 
PEON compounds can maintain a uniform and low C: 
N ratio (12:1 to 14:1) regardless of the soil types and 
nutrient management practices. All these indicated 



 Plant Soil

1 3
Vol:. (1234567890)

that N mineralization and subsequent N availability 
from protein-like PEON compounds could main-
tain crop needs for N (Mukherjee et  al. 2021a). On 
the other hand, unlike PB, SB and CC extractable N 
compounds might have different amino acid com-
positions and molecular sizes as observed from the 
discrete and higher values of C: N ratio (Matsumoto 
and Ae 2004; Matsumoto et  al. 2000a, b; Mukher-
jee et  al. 2021b), which might govern a mismatch 
between N availability and actual crop need. Because 
of these, PB excelled over SB and CC in establishing 
significant relationships with all the plant parameters 
under CA with different cropping systems (Table 3). 
Besides, PP mostly measures the reactive N species 
of high mobility, while ignoring the most labile PMN 
fractions (Saha and Mandal 2011; Stockdale et  al. 
2002). As it is a weak oxidizing agent, PP is ineffi-
cient in extracting protected protein-like compounds, 
which are complexed with other refractive fractions 
of organic N (Stockdale et  al. 2002) and contrib-
ute to the yield of available N in soil (da Silva et al. 
2019; Liu et al. 2016). After three years of CA with 
inorganic and organic (residue) N addition, the sys-
tem may not be mature enough to retain N in more 
complex organic forms, which generally happens in 
long-term organic-rich systems like CA or organic 
farming. This short-term CA could not restrict PP to 
measure the easily mineralizable organic N fractions 
present in soils and the difficulties related to N extrac-
tion from PMN fractions did not appear in this study. 
As a result, PP had strong relationships with grain 
and stalk N, its uptake by crop and grain yield. Even 
in some cases, the relations were at par with PB in 
addressing plant parameters.

Better relationships between PB extractable N with 
the most contributory hydrolyzable organic N frac-
tions further indicated the superiority of PB over the 
other methods (Table  4). Although PP established 
strong relationships with inorganic N for all the crop-
ping systems over the other extractants, these relation-
ships could not improve the correlations with plant 
parameters over PB. A lower contribution of inor-
ganic N to total N (~ 4–7%) may be the reason behind 
this, while PMN fractions, mostly represented by 
the other methods, may contribute to around 40% of 
total N in organic-rich systems (da Silva et al. 2019; 
Mukherjee et al. 2021b). CA facilitated a greater total 
N sequestration in soils in organic forms due to addi-
tion of organic N through rice residue for the last 

three years. Possibly, PB could extract these organic 
N fractions more efficiently than the other methods 
and therefore, was more responsive to total N in soils 
(Fig.  3). In the case of coefficient of variation and 
sensitivity analysis, the higher values are preferred as 
the soils under CA are subjected to perturbations and 
management practices. PB and PP accomplished the 
higher values (Fig. 4) and established their advantage 
over the other methods for all the cropping systems. 
The results of PCA further established the potential 
of PB among the methods of available N extraction 
(Supplementary information Table  S2 and Fig.  5). 
The highest score of PB in the first principal compo-
nent indicated its significant influence on crop per-
formance over the other methods. PCA-biplot also 
depicted the closest relation of PB followed by PP 
with crop parameters and easily mineralizable N frac-
tions. In contrast, SB and CC could not relate well 
to the same. Overall, PB was proved to be the best 
method for assessing the N availability in CA soils 
followed by PP.

Conclusion

On average, CA practices beyond three years signifi-
cantly improved N availability in soils of the lower 
Indo-Gangetic Plains. Of the tested 15 practices, ZT 
with 50–100% rice residue retention plus 75–100% 
N, P and K fertilizer for legume-based RMaC and 
RMuB cropping systems, and RT with 50% rice resi-
due plus 100% N, P and K fertilizers for cereal-based 
RCR system ensured adequate N supply in soil for 
nutrition of crops. Selection of these practices and 
cropping systems would overcome the problems of N 
nutrition of crops under CA. A novel multi-criteria-
based technique identified PB as the best method for 
estimating available N in soil under CA with rice-
based cropping systems, particularly, in the initial 
years. This study calls for validation of PB method to 
assess plant available N in other soil types and crop 
rotations under long-term CA practices.
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