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A B S T R A C T

This study evaluated the effects of integrated soil health management in the US Upper Midwest over three years 
(2021–2023), under diverse cropping systems and soil textures. We assessed 15 field pairs, each consisting of one 
conventional (CV) and one soil health (SH) site, implementing contrasting management. Our analysis focused on 
four soil organic matter pools, six microbial indicators derived from phospholipid fatty acids (PLFA) and one 
physical indicator. Log response ratios (LRR) were calculated to compare pair-wise responses between medium 
and moderately fine-textured soils. Wet aggregate stability (WAS) showed consistent improvement; within each 
pair, more soil health based principles (reduced tillage, more cover crops and crop diversity) led to greater 
aggregate stability compared to the paired CV site. Medium-textured soils responded more strongly to soil health 
management than moderately fine-textured soils. To assess the effects of specific management practices, we built 
a mixed-effects model with practices and their interactions as fixed effects and soil health indicators as response 
variables. Results showed that most soil properties were significantly responsive to two management combi
nations, 1) tillage x cover crops, and 2) tillage x cover crops x crop diversity. Microbial indicators along with 
potentially mineralizable nitrogen (PMN) exhibited the strongest increases with integrated soil health man
agement (p < 0.05), followed by permanganate oxidizable carbon (POXC) and total N (p < 0.1). Cover cropping 
alone moderately increased PMN (p < 0.1). While site-specific behavior varied based on texture and management 
intensities, our overall results supported the adoption of integrated soil health practices for healthier agricultural 
soils.

1. Introduction

Agricultural soils are overexploited to support about 95 % of global 
food production resulting in accelerated degradation (Hurni et al., 2015; 
Rinot et al., 2019; Rojas et al., 2016). Healthy soils are essential for 
sustainable land resource management (World Bank, 2008) and are 
defined as those continuing to function as a critical living ecosystem, 
sustaining plants, animals, and humans (Karlen et al., 2019; USDA 
NRCS, 2024). Recognizing the alarming issue of soil degradation, 
research over the past two decades has focused on improving agricul
tural soil health by adopting management principles developed by the 
USDA Natural Resources Conservation Services, specifically maximizing 
soil cover, maintaining living roots, increasing crop diversity, 

minimizing soil disturbance, and integrating livestock into cropping 
systems (Miner et al., 2020; Ye et al., 2021). Farmers across the US are 
slowly adopting these practices by reducing the intensity of tillage op
erations on their farms, planting more cover crops, and diversifying crop 
rotations (Islam & Reeder, 2014; Thierfelder & Wall, 2009), which is 
generating a need to monitor their long-term impact on soil health. 
Generally, healthy soils have high organic matter and stable aggregates, 
are well-drained, and have abundant microbial population and di
versity. Soil assessment is critical for farmers to quantify their progress, 
for investors to economically evaluate their costs and benefits, and for 
governments to demonstrate the impact of their policies and facilitate 
their wider adoption (Bagnall et al., 2023).

Soil health assessments rely on measuring dynamic soil properties, 
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known as soil health indicators, which are attributed to management 
practices and are least affected by inherent factors like soil texture and 
mineralogy (Amsili et al., 2021; Lehmann et al., 2020a,b; Nunes et al., 
2020). The selected indicators should 1) represent soil health rather 
than inherent properties or fertility, (2) be sensitive to soil health 
principles, (3) economically accessible, and (4) uniquely link soil func
tions to ecosystem services (Bagnall et al., 2023; Lehmann et al., 2020a, 
b; Rinot et al., 2019; Williams et al., 2020). The popular set of indicators 
developed by the Comprehensive Assessment of Soil Health focused on 
identifying constraints in bio-physical soil functioning and guiding land 
managers in decision-making related to practices promoting healthier 
soils (Moebius-Clune et al., 2016). Bagnall et al. (2023) recommended a 
minimum suite of indicators to evaluate soil health at a continent scale 
based on the North American Project to Evaluate Soil Health Measure
ments (Norris et al., 2020). They suggest that by focusing on three key 
indicators, (organic C, aggregate stability, and C mineralization poten
tial), stakeholders can effectively monitor soil with fewer economic 
constraints, increasing the possibility of further implementing soil 
health based practices.

However, specific objectives may require monitoring a different and 
wider range of indicators (Meena et al., 2024). For instance, soil health 
assessment for crop production often includes measuring organic C, 
nutrient availability, pH, microbial biomass, and penetration resistance 
(Andrews & Carroll, 2001; Cherubin et al., 2016; Idowu et al., 2009; 
Veerman et al., 2020). In contrast, climate change mitigation assess
ments would also require measuring greenhouse emissions, while those 
concerning water quality would include hydrological assessments of 
sediments and nutrient loss, as well as heavy metal analysis (Lehmann 
et al., 2020a,b). Therefore, identifying a suitable set of indicators is 
challenging for each study, as measuring all possible indicators is not 
cost-effective and no single indicator can capture all aspects of soil 
health (Takoutsing et al., 2016). Additionally, management-driven 
changes in soil properties may manifest over varying time scales with 
some appearing soon after implementing these practices, while others 
take several years to emerge (Strudley et al., 2008; Thierfelder & Wall, 
2009). Stewart et al. (2018) reviewed 192 studies across the US and 
observed that properties like aggregate stability, infiltration, and mi
crobial biomass can respond relatively quickly, within 3 years of cover 
cropping and reduced tillage operations. On the other hand, Angers & 
Eriksen-Hamel (2008) found that soil organic C takes longer, often >5 
years to show positive changes. A small number of studies have devel
oped or implemented soil health indices by weighting multiple in
dicators to quantify these responses to a single score (Maaz et al., 2023; 
Williams et al., 2020; Xue et al., 2019). However, decisions about the 
weight of different indicators may alter interpretations of soil health 
(Fine et al., 2017; Hussain et al., 1999). While these indices may be 
useful for large-scale estimations, they may be inaccurate while 
comparing inherently different soils (Lehmann et al., 2020a,b).

Previous studies have employed various methods to reduce the ef
fects of soil parent material, topography, texture, and local climatic ef
fects when analyzing the response attributed to management. One 
approach involved conducting investigations on research plots using 
randomized block design to maintain consistency across climate and 
pedological factors (Congreves et al., 2015; De Notaris et al., 2021; 
Krupek et al., 2022; Nunes et al., 2018; Pearsons et al., 2023; Ye et al., 
2021; Zuber et al., 2017). On-farm studies have compared adjacent or 
paired sites with similar cropping systems and landscape positions to 
ensure that only management practices vary and other factors remain 
the same (Blair et al., 2024; Marinari et al., 2006; Sihi et al., 2017; Van 
Diepeningen et al., 2006; Williams et al., 2020). While research plots 
offer higher accuracy, on-farm investigations provide the benefits of 
studying real farm systems, reflecting the scale, management, and 
complex challenges faced by stakeholders (Drinkwater, 2002). For 
example, controlled plot systems comparing no-till versus tilled systems 
can oversimplify the complex agrosystems, as most farmers adjust their 
tillage strategies based on local factors like crop types, residue, weed 

pressure, and soil and weather conditions (Krupek et al., 2022; Williams 
et al., 2020). Even on-farm studies focusing on a single practice such as 
tillage, cover cropping, or crop diversity, limit the scope of studying 
comprehensive management as they are not designed to analyze mul
tiple factors simultaneously (Krupek et al., 2022). A gap in the literature 
also exists for farm studies investigating management practices over the 
years for a more robust comparison aligning with the concept of the 
soil’s “continued capacity” to function effectively (Lehmann et al., 
2020a,b). Research studies have shown that soil properties gradually 
change with the long-term adoption of targeted management practices 
(Büchi et al., 2017), and also vary throughout the growing season 
(Diederich et al., 2019; Martin & Sprunger, 2022). Therefore, agronomic 
studies with samples over multiple years help in constraining variability 
more than single time points, and thus, are needed to advance current 
conservation strategies for sustainable land management.

The objective of our research was to address these gaps by sampling 
soils on working farms for three consecutive years to offer deeper in
sights than most existing studies. We investigated 30 participating farms 
in pairs (15 pairs) across diverse cropping systems and soil texture 
groups, implementing combined and varying management practices. 
This allowed us to reduce the effects of soil’s inherent properties within 
a pair but also compare the effects of texture across farms with similar 
management. We selected 11 properties as the potential indicators of 
management-driven changes. We hypothesized that 1) continuous 
management practices incorporating reduced tillage, cover cropping, 
and crop diversity will increase the levels of all selected indicators in SH 
sites compared to CV sites, and 2) combining two or more of these 
practices would lead to better health than implementing any one prac
tice alone.

2. Methodology

2.1. Study sites

We carried out this study for three years (2021–2023) on 30 farms in 
the Upper Mississippi River Basin of the US Midwest region in Minnesota 
and Wisconsin to represent a diversity of production systems in varying 
soil and crop types. Eighteen farm sites across seven counties were 
selected in Minnesota contributing to the Minnesota River, Des Moines 
River, Lower Mississippi River, Cedar River, and Upper Mississippi River 
Basins. Twelve sites across two counties in Wisconsin belonged to the 
Southeast Wisconsin-Fox River and Upper Rock Basins (Fig. 1). Minne
sota sites have a 30-year (1991–2020) mean annual temperature (MAT) 
between 6.1–7.4 ◦C and mean annual precipitation (MAP) between 
745–925 mm, while Wisconsin sites are slightly warmer and wetter with 
7.1–8.5 ◦C MAT and 920–940 mm MAP (Table 1) (NOAA, 2024; Wis
consin State Climatology Office, 2024). All farms were recruited in pairs 
of two sites with similar soil and landscape positions, where one site was 
identified as the CV and the other was the SH site. Soil texture was 
categorized into three groups – coarse (loamy fine sand), medium (loam 
and silt loam), and moderately fine (clay loam and silty clay loam), 
based on the soil map unit components derived from USDA Web Soil 
Survey (Soil Survey Staff, 2023). We conducted a farmers’ survey before 
the first sampling year (2021) to collect information on farm manage
ment including cash crops, cover crops, tillage operations, fertilizer and 
manure application, and animal grazing. All paired sites had a history of 
at least six years of employing contrasting management principles 
including the three study years, i.e., 2018–2023. Corn Grain (Zea maize) 
and Soybean (Glycine max) were the main cash crops across most of the 
study sites. Winter rye (Secale cereale) and a mixture of three or more 
crops were the most popular choices for cover cropping (Table 1).

2.2. Management practices and index

We classified the study sites as either CV or SH based on three out of 
four USDA-NRCS soil health principles – minimum tillage and more 
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cover crops and crop diversity (Chessman et al., 2019; Guo, 2021; 
Moebius-Clune et al., 2016). Fields employing full-width tillage opera
tions like chisel plow, moldboard plow, or disk ripper, had fewer cover 
crops, and shorter crop rotations, were characterized as CV, while those 
incorporating reduced or no-till practices, planting cover crops, and had 
longer crop rotations, were characterized as SH sites. The significant 
variation in management practices across participating farms means 
that no meaningful management recommendations could be derived 
from analyzing the data categorically. To better represent the manage
ment practices, we quantified tillage, cover crops, and crop diversity as 
indices for each site (Blair et al., 2024). Tillage score was assigned based 
on the type of disturbance – full-width primary tillage as 1, partial width 
or secondary tillage/mechanical weeding as 0.5, and no tillage as 0. 
These scores were assigned for all annual tillage passes and summed up 
for the six years of recorded management data, thus ranging between 
0–12. The scores were converted into indices by dividing with the 
maximum obtained score (i.e., 12), see eq (1). Cover crops or CC scores 
were attributed to the number of shoulder seasons (spring/fall) with a 

living root in the ground. The score varied from 0 (no shoulder season 
cover crop in any of the six years) to 12 (cover crops in both spring and 
fall, all years). Alfalfa and winter wheat were scored 2. CC scores were 
also normalized by dividing by 12, the highest obtained score across all 
sites. A crop diversity (CD) index was estimated by dividing the total 
number of different crop species (including both cash and cover crops) 
planted during the six years by the maximum number of crop species 
planted across all field sites (Krupek et al., 2022). A mixture of cover 
crops was counted as three different species. 

Tillage or CC or CD Indexi =
ith site score

Maximum obtained score
(1) 

2.3. Soil sampling and measurement

All fields were sampled during fall (October-November) in 
2021–2023, after harvesting the cash crops (except perennial or cover 
crops). At the beginning of the project, two soil moisture sensor probes 

Fig. 1. All study sites location and texture categories (as per USDA classification). “CV” stands for conventional, and “SH” defines soil health sites.
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Table 1 
Study sites’ descriptions (M1-9 from Minnesota and W1-6 from Wisconsin), farm management practices (2018–2023), and indices calculated based on these practices. 
Details about indices calculation are given in section 2.2. MAT, MAP, CC, CD, SH and CV refer to mean annual temperature, mean annual precipitation, cover crops, 
crop diversity, soil health and conventional.

Site County Texture MAT 
(̊C)

MAP 
(mm)

Soil Types Management Cash crops Cover 
crops

CC 
Index

CD 
Index

Tillage 
Practices

Tillage 
Index

Manure 
application 
method and 
time

M1 Benton Coarse 6.13 753 Kost loamy 
fine sand, 
0 to 2 % 
slopes

SH Corn Silage, 
Potato, Kidney 
bean

Winter 
Rye

0.33 0.57 Field 
cultivator, 
disk ripper, 
chisel plow, 
disk harrow

0.67 Surface/ 
Knifed, Fall

Kost loamy 
fine sand, 2 
to 6 % 
slopes

CV Soybean, Corn 
Grain

None 0.00 0.29 Chisel plow, 
mostly no- 
till

0.33 Surface, 
Fall/ Spring

M2 Redwood Mod 
fine

7.31 746 Canisteo 
clay loam, 
0 to 2 % 
slopes

SH Soybean, Corn 
Grain

Winter 
Rye, 
Cover 
crops 
mix

0.33 0.86 No-till, 
vertical 
tillage 1″

0.04 NA

CV Soybean, Corn 
Grain

None 0.00 0.29 Chisel plow, 
field 
cultivator

0.75 NA

M3 Murray Medium 6.82 757 Svea loam, 
1 to 3 % 
slopes

SH Soybean, Corn 
Grain, Alfalfa

Cover 
crops 
mix, 
Alfalfa

0.67 0.86 No-till 0.00 Surface, Fall

CV Soybean, Corn 
Grain

None 0.00 0.29 Chisel plow, 
field 
cultivator, 
disk ripper

0.75 Knifed, Fall

M4 Redwood Medium 7.31 746 Storden- 
Ves 
complex, 6 
to 10 % 
slopes

SH Soybean, Corn 
Grain

Winter 
Rye

0.33 0.43 No-till 0.00 NA

CV Soybean, Corn 
Grain

Winter 
Rye

0.08 0.43 Chisel plow 0.50 NA

M5 Dodge Medium 6.77 907 Spillville 
loam, 0 to 
2 % slopes

SH Soybean, Corn 
Grain

Winter 
Rye

0.50 0.43 No-till 0.00 Surface, Fall

CV Soybean, Corn 
Grain

None 0.00 0.29 Disk harrow 0.13 Surface, Fall

M6 Olmsted Medium 6.95 909 Tama silt 
loam, 2 to 
6 % slopes

SH Soybean, Corn 
Grain

Cover 
crops 
mix

0.50 0.71 No-till 0.00 Surface, Fall

CV Soybean, Corn 
Grain

None 0.00 0.29 Field 
cultivator, 
chisel plow, 
disk harrow

0.54 NA

M7 Mower Medium 6.85 925 Skyberg 
silt loam, 
0 to 3 % 
slopes

SH Soybean, Corn 
Grain

None 0.00 0.29 Ridge till 0.13 NA

CV Soybean, Corn 
Grain

None 0.00 0.29 Field 
cultivator, 
chisel plow, 
disk ripper

0.75 NA

M8 Freeborn Medium 7.13 908 Newry silt 
loam, 1 to 
3 % slopes

SH Soybean, Corn 
Grain

Cover 
crops 
mix

1.00 0.71 Strip till 0.50 NA

CV Corn Grain None 0.00 0.14 Field 
cultivator, 
disk riper

0.75 Surface, Fall

M9 Mower Medium 6.85 925 Havana silt 
loam

SH Cannabis 
(2019–2023), 
Corn Grain 
(2018)

Cover 
crops 
mix

1.00 0.71 No-till 0.00 Surface, 
Fall/ Spring

CV Soybean, Corn 
Grain

None 0.00 0.29 Field 
cultivator, 
disk ripper

0.75 NA

W1 Dodge Medium 7.19 921 Mendota 
silt loam, 2 
to 6 % 
slopes

SH Soybean, Corn 
Grain, Winter 
Wheat

Winter 
Rye, 
Winter 
Wheat, 
Cover 
crops 
mix

0.67 1.00 Strip till, 
mostly no- 
till

0.08 Surface, 
Fall/ 
Summer

CV Soybean, Corn 
Grain

None 0.00 0.29 Disk ripper, 
chisel plow

0.42 NA

(continued on next page)
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(AquaCheck Sub-Surface, Cape Town, South Africa) were installed at all 
farm sites to acquire real-time daily soil moisture data (Garg et al., 
2025). Methods and data from the moisture monitoring effort are re
ported in detail in Kwakye et al. (in prep). Three soil samples were 
collected from within a 3 m radius of these sensors (Fig. 2). We sampled 
each location as a mixture of three 0–15 cm deep, soil sub-sample blocks 
collected using a sharpshooter shovel within a 0.5 m radius circle around 
a central point. Sampling was performed in two parts – a large undis
turbed sample for aggregate stability and nutrient measurement, and a 
small hand-homogenized sample for microbial analysis, which was 
immediately stored in a cooler on dry ice before transferring to the 
laboratory refrigerator. Samples designated for nutrient analysis were 
air-dried before packaging. All samples were sent to the Soil Health 
Assessment Center, University of Missouri for analysis.

The soil indicators in this study (Table 2) were selected based on 
their ability to represent the physical, chemical, and biological health of 

the sampled soils, as well as their potential to respond to changes in 
management practices. Though different studies have identified 
different minimum data sets (e.g. Bagnall et al., 2023; Stott, 2019), this 
set of widely used indicators continues to build the literature available 
for comparing across studies and research sites, as detecting changes in 
soil health remains a challenge for soil scientists (Wander et al., 2019). 
Effective cation exchange capacity was estimated by measuring soil 
cations, including Ca2+, Mg2+, K+, and Na+, as the number of cations 
exchanged by unbuffered NH4OAc from the soil exchange sites, 
replacing them with NH4

+. After the cations were extracted, the soil 
samples were extracted with ethanol to remove excess NH4

+, leaving only 
NH4

+ ions on the exchange complex. The soil samples were then taken to 
a Foss Kjeldahl analyzer (Kjeldahl, 1883) and the amount of NH4

+ ions 
was determined to directly measure the exchangeable cations 
(Supplementary material S1) (Soil Survey Staff, 2022). Soil available P 
(Supplementary material S1) was extracted in Bray no. 1 solution (NH4F 

Table 1 (continued )

Site County Texture MAT 
(̊C) 

MAP 
(mm) 

Soil Types Management Cash crops Cover 
crops 

CC 
Index 

CD 
Index 

Tillage 
Practices 

Tillage 
Index 

Manure 
application 
method and 
time

W2 Dodge Medium 7.19 921 St. Charles 
silt loam, 
0 to 2 % 
slopes

SH Soybean, Corn 
Grain, Winter 
Wheat

Winter 
Rye

0.83 0.43 Disk ripper, 
mostly no- 
till

0.08 Surface, Fall

CV Soybean, Corn 
Grain

None 0.00 0.29 Disk ripper 0.92 NA

W3 Dodge Mod 
fine

7.19 921 Pella silty 
clay loam, 
cool, 0 to 2 
% slopes

SH Soybean, Corn 
Grain

Winter 
Rye

1.00 0.43 No-till 0.00 Surface, Fall

CV Soybean, Corn 
Grain

None 0.00 0.29 Disk ripper, 
chisel plow, 
field 
cultivator

0.38 Integrated, 
Fall

W4 Dodge Medium 7.19 921 Juneau silt 
loam, 2 to 
6 % slopes

SH Corn Silage 
(2018–2022), 
Alfalfa (2023)

Winter 
Rye, 
Alfalfa

1.00 0.43 No-till 0.00 Surface, 
Fall/ Spring

CV Soybean, Corn 
Grain, Winter 
Wheat

Cover 
crops 
mix

0.58 0.86 Disk ripper 0.33 NA

W5 Racine Medium 8.36 939 Ozaukee 
silt loam, 2 
to 6 % 
slopes

SH Soybean, Corn 
Grain, Winter 
Wheat

Winter 
Rye, 
Cover 
crops 
mix

0.75 1.00 No-till 0.00 NA

CV Soybean, Corn 
Grain

None 0.00 0.29 Field 
cultivator, 
chisel plow

0.50 NA

W6 Racine Medium 8.36 939 Aztalan 
loam, 2 to 
6 % slopes

SH Soybean, Corn 
Grain

Winter 
Rye

0.50 0.43 No-till 0.00 Surface, 
Fall/ Spring

Ozaukee 
silt loam, 2 
to 6 % 
slopes

CV Soybean, Corn 
Grain

None 0.00 0.29 Disk ripper, 
chisel plow

1.00 NA

Fig. 2. Soil sampling procedure for the study.
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and HCl solution) and analyzed in a spectrophotometer at 882 nm 
wavelength (Bray and Kurtz, 1945). The sample pH (Supplementary 
material S1) was measured as the pH of the soil suspension in the 
presence of 0.01 M CaCl2 (Thomas, 1996). The amount of organic C and 
total N were measured in a combustion analyzer. Permanganate 
oxidizable carbon was estimated using a KMnO4 solution to oxidize the 
carbon present in the soil and measuring the change in color through 
spectrophotometric methods (Weil et al., 2003). Potentially mineraliz
able nitrogen was estimated by a 7-day anaerobic incubation method 
where it was quantified by subtracting the initial amount of NH4

+ from 
the amount of NH4

+ released during incubation, and NH4
+ was extracted 

with 2 M KCl (Anderson et al., 2010). Soil’s aggregate stability was 
determined by the wet sieving method, a protocol developed by the 
USDA-NRCS (Soil Survey Staff, 2022). It measures the retention of air- 
dry aggregates (1–2 mm) on a 0.5-mm sieve after submerging the 
sample in reverse osmosis water and then agitating.

Microbial biomass and community composition in soil samples were 
characterized by PLFA extractions (Buyer & Sasser, 2012). Sieved soil 
samples were dried in vacuo overnight in the centrifugal evaporator and 
extracted using Bligh–Dyer (500 ml methanol, 250 ml chloroform, and 
200 ml 50 mM K2HPO4 in H2O) extractant under a stream of nitrogen. 
The extract was dried, dissolved in chloroform, and added to a 96-well 
solid phase extraction plate containing 50 mg of silica per well. Phos
pholipids were eluted with 0.5 ml of 5:5:1 methanol: chloroform: H2O 
into glass vials, dried, and transesterified using 0.561 g KOH dissolved in 
75 ml methanol to which 25 ml toluene was added. The resulting fatty 
acid methyl esters were analyzed by Gas Chromatography and PLFA 

peaks were assigned to microbial groups by Sherlock Software (version 
6.0, MIDI Corp, Newark, NJ). We present here Actinomycetes, Gram 
positive bacteria, Gram negative bacteria, Fungi, and AM Fungi as the 
PLFA bioindicators (Mann et al., 2019). The software assigned mono
unsaturated fatty acids (e.g., 16:1ω7c) and cyclopropanes to Gram 
negative bacteria, saturated branched chain PLFAs (e.g., 15:0iso and 
15:0anteiso) to Gram positive bacteria, 10-methyl fatty acids (such as 
10Me16:0 and 10Me18:0) to Actinomycetes, and 16:1ω5c to AM Fungi. 
For the Fungi population, the MIDI software only assigned 18:2ω6,9 
peak but we added 18:1ω9 manually during analysis due to its signifi
cant presence in our dataset (Frostegård et al., 2011). Total PLFA rep
resents the total microbial mass present in the soil, calculated by 
summing all the PLFAs identified in each sample.

2.4. Data analysis and statistics

We statistically analyzed all data in RStudio [2023.06.1 (R Core 
Team, 2024)]. The data were analyzed in categorical groups of SH vs CV 
by calculating natural logarithm of the response ratio, LRR, for each soil 
property using CV sites as the reference values as given in eq (2). The 
LRR is a valuable metric for soil studies as it quantifies proportional 
changes in response variables when comparing different management 
conditions. Previous studies like Aranguren & Cañón (2023), Bagnall 
et al. (2022), Xue et al. (2019), and Zuber & Villamil (2016) have 
effectively employed LRR to evaluate responses between management 
systems, such as organic vs conventional management, and tillage vs 
non-tillage systems, etc. In this study, site M1 was excluded from LRR 
analysis due to more intense tillage operations performed in the SH site 
compared to its CV counterpart, leading to misrepresentation of the 
management category. 

LRR = ln
(

YSH − YCV

YCV

)

(2) 

where YSH refers to the average value (across sites) of a soil property 
corresponding to the SH site and YCV value corresponds to the CV site, 
with a 90 % confidence interval. An LRR > 1 indicates positive changes 
in the respective soil property due to soil health management. The ratios 
were calculated separately and compared for medium-textured and 
moderately fine-textured soils.

In the next step, a mixed-effects model (lme4 package) was fitted 
with the three management variables (tillage, cover crops, and crop 
diversity) as fixed effects along with their interactions, and soil texture 
categories (coarse, medium, and moderately fine) as the random effect 
(Bates et al., 2015; Schielzeth & Nakagawa, 2013; Slaets et al., 2021; 
Wood & Bowman, 2021). The data were log-transformed to meet the 
assumptions of normality and homoscedasticity (Williams et al., 2020; 
Witzgall et al., 2024). We used type III ANOVA using Satterthwaite’s 
method at an alpha level of 0.1 to account for the high data variability 
anticipated in on-farm studies. Results obtained from the mixed-effects 
model are shown by plotting a heatmap of p-values and interaction 
plots of fixed effects. A correlation matrix was additionally generated to 
visualize the relationships among soil response variables through the 
Pearson correlation coefficient (r). Spider diagrams were plotted using 
Origin Pro 2023b (10.0.5.157).

3. Results

3.1. Correlation between soil properties

We averaged soil data across the three years (data by year presented 
in Supplementary material S1) to generate a correlation matrix high
lighting the linear relationships among various soil properties, as illus
trated in Fig. 3. The analysis revealed strong positive linear correlations 
among all microbial groups (r = 0.75–0.99) and soil organic matter pool 
indicators (r = 0.74–0.99). The linear associations between microbial 

Table 2 
Methods of soil properties measurement used by the Soil Health Assessment 
Center at the University of Missouri.

Soil property Units Method of analysis Reference

Calcium (Ca) meq/ 
100 g

Unbuffered ammonium 
acetate method, NH4

+ was 
measured using the Kjeldahl 
method

​

Magnesium (Mg) meq/ 
100 g

(Kjeldahl, 1883; 
Soil Survey 
Staff, 2022)

Potassium (K) meq/ 
100 g

​

Sodium (Na) meq/ 
100 g

​

Phosphorus (P) ppm Bray-1P method (Bray and 
Kurtz, 1945)

pH − 1:2 soil and 0.01 M Calcium 
chloride suspension

(Thomas, 1996)

Organic carbon (C) % Combustion analyzer (Nelson & 
Sommers, 
1996)

Permanganate 
oxidizable carbon 
(POXC)

mg C/ 
kg

Weil method (Weil et al., 
2003)

Total nitrogen (N) % Combustion analyzer (Bremner, 
1996)

Potentially 
mineralizable 
nitrogen (PMN)

ppm 7-days anaerobic incubation (Anderson 
et al., 2010)

Wet aggregate 
stability (WAS)

% Sieve dipping method (Soil Survey 
Staff, 2022)

Gram negative 
bacteria

nmol/ 
g

Gas Chromatography (Buyer & 
Sasser, 2012)

Gram positive 
bacteria

nmol/ 
g

Actinomycetes nmol/ 
g

Arbuscular 
Mycorrhizal 
Fungi (AM Fungi)

nmol/ 
g

Fungi nmol/ 
g

Total phospholipid 
fatty acids (PLFA)

nmol/ 
g
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indicators and nutrients were also strong, with r ranging between 
0.61–0.90. The bacterial groups (Gram negative, Gram positive, and 
Actinomycetes) exhibited a greater association with C and N availability 
in soil (r > 0.8) compared to the fungal groups (Fungi and AM Fungi), 
where 0.6 < r < 0.8. Wet aggregate stability showed a moderately 
positive correlation with both microbial (r = 0.37–0.56) and organic 
matter indicators (r = 0.31–0.48).

3.2. Pair-wise response to management

We found that the mean LRR for medium-textured soils were weakly 
positive, representing higher levels of estimated soil properties in the SH 
sites than in their paired CV sites (Fig. 4). The only exceptions to this 
trend were Fungi in 2022 (LRR = − 0.035), and PMN and POXC in 2023 
(LRR = − 0.002 and − 0.001, respectively), where slight negative LRR 
were observed. The highest mean LRR was observed for wet aggregate 
stability (0.49–0.79). Other moderate to strong positive responses were 
observed in AM Fungi (0.07–0.31), Actinomycetes (0.04–0.20), and 
Total PLFA (0.02–0.19). Conversely, moderately fine-textured soils 
exhibited more variability in their responses with most properties fluc
tuating between positive and negative ratios across the years. The only 
exception to this variability was AM Fungi, which showed a consistently 
positive response (0.16–0.53) in all three years. It is important to note 
that the higher variability and larger confidence intervals may be 
attributed to the limited number of sites representing moderately fine- 
textured soils (two pairs) compared to medium-textured soils (twelve 
pairs).

To understand how various indicators respond at specific locations, 
we present the normalized differences in soil indicators at M2 and M9 
(Fig. 5), where the calculated management indices for CV sites are 
identical (Table 1). Practices at SH sites are slightly different, with M2 
SH incorporating more diversity in cash and cover crops (CD index is 
0.86 for M2 and 0.71 for M9), while M9 SH incorporated cover crops at 
every available point in rotation (CC index is 0.33 for M2 and 1.00 for 
M9). At the M2 SH site, only AM Fungi and wet aggregate stability 
values were greater than CV, whereas M9 SH demonstrated consistently 
greater values of all soil indicators. The variability in response may be 
attributed to differences in soil texture (M2 has moderately fine texture, 
M9 has medium texture), the intensity of practices (more cover cropping 
in M9), and crop variety. Notably, the M9 SH site has been growing 
Cannabis as its cash crop for the past five years (2019–2023), which may 
partially have improved soil properties through the decomposition of 
Cannabis roots, known to be a rich source of organic matter (Asiimwe 
et al., 2022), while corn or corn/soybean have a limited positive impact, 
acting either as a small C source or a sink (Gamble et al., 2021; Suyker & 
Verma, 2012). The variability specific to these two sites exemplifies the 
challenge of generalizing soil health results across working farms.

3.3. Soil properties’ response to management indices

Using the indexed management variables, we found that combined 
management practices more strongly influenced soil properties than 
individual management practices (Fig. 6). All microbial indicators were 
significantly influenced by the interaction between tillage x cover crops 

Fig. 3. Matrix representing correlation coefficients (r) among all soil properties averaged across the three years of study. Here, PMN, POXC, WAS, and Total PLFA 
refer to concentrations of potentially mineralizable nitrogen, permanganate oxidizable carbon, wet aggregate stability, and total phospholipid fatty acids in the soil. 
AM_Fungi, Gram_Negative, Fungi, Gram_Positive, and Actinomycetes are relative abundance of various microbial guilds within phospholipid extractions.
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with p values ≤ 0.01. Similarly, the three-way interaction among tillage 
x cover crops x crop diversity significantly increased the microbial 
abundance in soil with p < 0.05 for all identified groups. Among the 
organic matter indicators, PMN showed the most significant response to 
management. The tillage x cover crop and tillage x cover crop x crop 
diversity factors were significantly associated with increased PMN, 
while cover crops alone had only a moderately significant effect on PMN 
(p < 0.1). Total N also increased with tillage x cover crop (p < 0.1), while 

POXC was equally influenced by tillage x cover crop and tillage x cover 
crop x crop diversity (p < 0.1). The responses observed in wet aggregate 
stability and organic C were statistically insignificant; however, they 
followed the same trend as other indicators with the lowest observed p- 
values among all practices for tillage x cover crop and tillage x cover 
crop x crop diversity.

To explore the nature of the two- and three-way interactions in the 
mixed-effects models, we present the example of total PLFA, which 

Fig. 4. LRR with 90% confidence intervals for soil properties averaged across sites by texture: (a) medium-textured soils and (b) moderately fine-textured soils. Here, 
PMN, POXC, WAS, and Total PLFA refer to concentrations of potentially mineralizable nitrogen, permanganate oxidizable carbon, wet aggregate stability, and total 
phospholipid fatty acids in soil. AM Fungi, Gram Negative, Fungi, Gram Positive, and Actinomycetes are relative abundance of various microbial guilds within 
phospholipid fatty acid extractions. A positive LRR indicates a higher value in the SH site compared to its CV pair, and negative value indicates higher amounts in the 
CV site. For a clear comparison between the two texture classes, we kept the y-axis scale the same for both graphs, so confidence intervals for AM Fungi, Fungi, and 
wet aggregate stability are not visible for moderately fine-textured soils in 2022.
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appears to decline with tillage (Fig. 7a). However, tillage reduction has a 
stronger impact when combined with more frequent cover crops 
(Fig. 7b), represented by steeper plot slopes for farms with cover crops 
(CC indices = 0.3–1.0) compared to reduced-tillage sites without cover 
crops (CC index = 0). Similarly, more crop diversity is associated with 
higher PLFA levels under reduced tillage conditions (Fig. 7c). Therefore, 
reduced tillage combined with more cover crops and higher crop 

diversity appears to be the best practice for attaining higher microbial 
biomass. The pattern exhibited by the interaction plots for total PLFA 
data was similarly observed in other soil properties as well. This is 
consistent with our earlier analysis, where most of these properties were 
found to be highly correlated, indicating a likely similar influence of 
management practices across multiple soil health indicators.

4. Discussion

Indexing sites based on the intensity of their management practices 
allowed us to assess the responses specific to individual practices and 
their combinations in our mixed-effects model. This approach allowed 
us to assess whether the soil response was proportional to the intensity 
of practice application, which varied widely within and beyond the SH 
and CV categories. For example, the CV site in W4 has a Tillage Index =
0.33, CC Index = 0.58, and CD Index = 0.86, scoring similarly to M2 and 
M5 SH sites (Tillage, CC, and CD indices are 0.04, 0.33, 0.86 and 0.00, 
0.50, 0.43, respectively). In another case, the M7 sites differed only in 
their tillage practices (0.75 for CV and 0.13 for SH) while the CC (0.00) 
and CD (0.29) indices were the same. Indexing enabled us to center 
management practices in our analysis, interrogating whether similar 
practices resulted in similar soil response, while still controlling for 
texture. We acknowledge the breadth of practices covered by this study 
as both a weakness and a strength, as we lack the power to pinpoint 
specific soil impacts of practices applied consistently but can confidently 
report soil dynamics in realistic farm management scenarios.

The mixed-effects model and LRR results together provided com
plementary insights into how management practices affected soil 
properties. By accounting for the varying intensities of tillage, cover 
crops, and crop diversity, the mixed-effects model captured the com
bined effects of these practices on soil microbial properties and soil 
organic matter pools through PMN and POXC. However, the model did 

Fig. 5. Spider diagrams comparing soil properties within a pair for sites M2 (moderately fine texture) and M9 (medium texture). All values were normalized by 
dividing with the maximum value specific to each parameter across all sites. Here, PMN, POXC, WAS, and Total PLFA refer to concentrations of potentially 
mineralizable nitrogen, permanganate oxidizable carbon, wet aggregate stability, and total phospholipid fatty acids in soil. AM Fungi, Gram negative, Fungi, Gram 
positive, and Actinomycetes are relative abundance of various microbial guilds within phospholipid fatty acid extractions.

Fig. 6. Mixed-effects model results shown in a heatmap of p-values with lighter 
color representing more significant responses. Here T, CC, CD, T:CC, T:CD, CC: 
CD, and T:CC:CD refer to tillage, cover crops, crop diversity, tillage x cover 
crops, tillage x crop diversity, cover crops x crop diversity, and tillage x cover 
crops x crop diversity, respectively. The parameters PMN, POXC, WAS, and 
Total PLFA refer to potentially mineralizable nitrogen, permanganate oxidiz
able carbon, wet aggregate stability, and total phospholipid fatty acids in soil, 
respectively. AM Fungi, Gram negative, Fungi, Gram positive, and Actinomy
cetes are relative abundance of various microbial guilds within phospholipid 
fatty acid extractions. * and ** indicate p < 0.1 and < 0.05.
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not detect a significant effect on wet aggregate stability, which showed a 
positive response in the LRR analysis. This could be explained by the fact 
that LRR is more sensitive to localized changes because it compares SH 
and CV sites within each pair, demonstrating the beneficial effects of 
management on wet aggregate stability. This difference emphasized the 
usefulness of LRR in detecting site-specific or localized effects that may 
not be visible in a more complex, site-wide model like the mixed-effects 
model.

4.1. SH versus CV fields

We categorized the data by texture to calculate the mean LRR spe
cific to each soil texture group. The LRR values associated with wet 
aggregate stability and AM Fungi were consistently positive across both 
groups, highlighting their sensitivity to soil health practices. Previous 
studies have revealed that AM Fungi strongly respond to soil health- 
based management (Aranguren & Cañón, 2023; Muhammad et al., 
2021; Njeru et al., 2014). They promote soil health development by 
enhancing plant nutrient availability, ecological interactions, and soil 
aggregation through the secretion of soil proteins and exudates (Giri & 
Varma, 2020; Lehmann et al., 2020a,b; Parihar et al., 2019). Therefore, 
higher levels of AM Fungi are typically associated with strong soil ag
gregation and ecological functions (Giri & Varma, 2020; Rillig et al., 
2015). Our findings support this idea as SH sites demonstrated higher 
levels of both AM Fungi and wet aggregate stability (Blair et al., 2024). 
Williams et al. (2020) reported that wet aggregate stability exhibited the 
most sensitivity to management while comparing soil properties be
tween managed and unmanaged soils. Although our study did not 
include non-degraded or unmanaged reference sites (Aranguren & 
Cañón, 2023; Williams et al., 2020), each paired field in our study served 
as a reference for its counterpart, to identify the direction of changes in 
soil health. While wet aggregate stability did not depend on the intensity 
of management practices, as suggested by our mixed-effects model 

results, the positive LRR indicates that wet aggregate stability consis
tently improved in many local contexts when soil health principles were 
applied, regardless of the specific intensity levels of these practices. 
Among all the complexity surrounding soil health assessment and 
ecosystem service provision, the consistent response of this property 
may provide a way forward for land managers and policy makers to 
assess and document improvements in soil health, which may provide 
climate adaptation and water quality benefits (Lewandowski & Cates, 
2023).

The response to soil health management showed more profound ef
fects in medium-textured soils than in moderately fine-textured soils. 
Similar results have been reported in literature while comparing texture- 
wise response of soil properties to cover crops (Blanco-Canqui et al., 
2015; Blanco-Canqui & Jasa, 2019; Muhammad et al., 2021; Salazar 
et al., 2022) and tillage (Lozano et al., 2013; Taboada et al., 1998). 
Muhammad et al. (2021) outlined that medium-textured soils support 
microbial growth due to their ability to provide optimal levels of soil 
aeration and moisture whereas finer soils, due to anaerobic conditions, 
restrict the growth of aerobic microorganisms. A similar set of paired on- 
farm observations noted lower PMN and extracellular enzyme activities 
in sites with the highest clay content (Blair et al. 2024). Brennan and 
Acosta-Martinez (2017), argued that decomposition of organic material 
is faster in coarse or medium-textured soils compared to fine-textured 
soils, making changes in microbial biomass harder to detect in 
medium-textured soils, but we did not have sufficient coarse-textured 
soils data to effectively test this hypothesis.

4.2. Impact of management practices

Our first hypothesis was partially confirmed as practices based on 
soil health principles resulted in healthier soils, reflected by increased 
microbial population and organic matter pools. However, the response 
was inconsistent. We also found that soil properties were most 

Fig. 7. Interaction plots showing natural log values of (a) Total PLFA vs tillage, (b) Total PLFA vs tillage for different cover crop levels (represented by color), and (c) 
Total PLFA vs tillage for different levels of cover crops and crop diversity (represented by color and size, respectively). The grey area shows the 95% confidence 
intervals around the regression lines. Total PLFA indicates the total phospholipid fatty acids in soil.
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responsive to integrated management practices, supporting our second 
hypothesis. This aligns with the findings from a long-term field-plot 
experiment conducted at Cornell University spanning over 20 years 
(1992–2016, sampled in 2017) focused on soil health practices (Nunes 
et al., 2018). While long-term no-till significantly improved soil health, 
the benefits were further amplified by the addition of cover crops over 4 
years and perennial grass rotations for 12 years (Nunes et al., 2018). This 
highlights how crop rotation and cover crops enhance soil health in 
ways that complement tillage practices, as no-till is less effective without 
the soil organic matter-building impact of these practices (Mitchell et al., 
2017). Similarly, Williams et al., (2020) found that a combination of 
crop diversity, tillage, and organic amendments improved soil proper
ties on 20 farms in Sweden.

There are several potential reasons why a combination of no tillage, 
more cover crops and crop rotations work best together. One explana
tion is that when tillage is combined with cover crops, it accelerates the 
decomposition of labile organic matter inputs from the cover crops, 
reducing their potential to build long-term soil C. Tillage exposes more 
soil surface to oxygen and nutrients, increasing microbial activity and 
leading to a faster breakdown of cover crop biomass, potentially 
reducing the amount of biomass remaining in fall soil (Six et al., 2002). 
In contrast, a no-till environment is relatively stable, providing some 
protected soil environments where organic matter decomposes at a 
slower rate. This allows cover crop C inputs to persist for a longer period 
and provides sustained benefits such as improved soil structure, mois
ture retention, and nutrient availability. Cover crops and crop rotations 
may also improve the agronomic outcomes of a no-till system, as diverse 
rotations have been shown to increase yields (Smith et al., 2008; Zhao 
et al., 2020), and cover crops may help suppress weeds (Osipitan et al., 
2018; Scopel et al., 2013). Higher yields add more organic matter to the 
system in the form of crop residues. Crop rotations also improve soil 
health by promoting biodiversity, disrupting disease cycles, and pre
venting the accumulation of pests commonly found in monoculture 
systems.

We observed that microbial groups were more sensitive to soil 
management than organic matter pools, which is consistent with the 
findings of a meta-analysis conducted by Stewart et al. (2018). Balota 
et al. (2014) observed a similar trend where microbial parameters 
responded more strongly than organic C to 23 years of winter cover 
cropping and varying tillage systems in an Oxisol from Paraná State, 
Southern Brazil. In contrast, a 31-year study showed comparable im
provements in both microbial and nutrient properties of the soil 
(Mbuthia et al., 2015). This may suggest that microbial parameters are 
quicker to react to environmental changes including in-season fluctua
tions (Leitner et al., 2021; Muhlbachova et al., 2015), whereas organic C 
changes are relatively slow to manifest (Angers & Eriksen-Hamel, 2008; 
Stott, 2019). Although a few studies documented positive changes in 
organic C within 5 years of improved management (Bai et al., 2019; 
McCarty et al., 1998), others showed that changes may take several 
decades to occur (De et al., 2020). Significant soil C losses are common 
in corn-dominated cropping systems, even when cover crops are used, 
suggesting that management practices may be only marginally effective 
in mitigating huge C losses associated with harvest activities (Cates & 
Jackson, 2019; Gamble et al., 2021). In addition, cooler climates and 
shorter growing seasons make establishing of winter cover crops diffi
cult, and low establishment provides only marginal benefits (Strock 
et al., 2004; Wilson et al., 2014).

The only indicator reflecting the soil’s capacity to supply nutrients to 
crops that showed a significant relationship with individual cover 
cropping practice (p < 0.1) is PMN, which estimates N supply to plants 
through microbial processes (Mahal et al., 2018). The use of cover crops 
prolongs the period of primary productivity, decreasing N losses from 
the system through leaching or runoff by transforming inorganic N into 
organic N, and contributes extra residue, which after decomposition, 
may enhance labile organic matter pools and PMN levels. In addition to 
retaining N within the system, legume cover crops also introduce N into 

the system by fixing atmospheric N, which eventually contributes to 
plant-available N forms through the process of mineralization, as re
flected by increased PMN (Sanchez et al., 2001; Tonitto et al., 2006). 
While cover crops can increase the total C and N in the longer term, 
increases in labile fractions such as PMN or POXC may be quicker 
(Chahal & Van Eerd, 2020). In a meta-analysis of 43 published studies, 
Mahal et al. (2018) found a substantial 211 % increase in PMN levels in 
studies planting legume crops and a 77 % increase with a mix of legume 
and non-legume crops, while non-legume cover crops showed little to no 
effect. In contrast, Moore et al. (2014) reported a 38 % increase in PMN 
under non-legume cereal rye (Secale cereale) cover when planted after 
corn or corn-soybean rotation. Peregrina et al. (2012) examined the 
effects of resident vegetation cover in a vineyard in Northern Spain, 
dominated by annual grass and forbs (such as Bromus hordeaceus L. ssp. 
hordeaceus, Hordeum murinum L., Diplotaxis erucoides (L.) DC., Sonchus 
asper (L.) Hill, etc.). Their findings demonstrated improvements in PMN 
levels and reduction in soil N-NO3

- pools, indicating a more active mi
crobial biomass promoting N immobilization and recycling under cover 
crop treatments. In our study, most fields used grasses and brassicas as 
cover crops, while others planted a mixture of legumes and non-legumes 
(Secale cereale, Camelina sativa, Triticum secale, Trifolium pratense, etc.), 
making it challenging to identify whether the difference in cover crop 
variety had any noticeable effect.

5. Conclusion

In this large-scale on-farm study, we assessed the impact of diverse 
management practices on soil health. Our statistical findings highlight 
the benefits of adopting integrated management approaches (reduced 
tillage, increased use of cover crops, and greater crop diversity) to 
promote healthier farm soils, lending support to some policy initiatives 
that promote bundling of practices for higher cost-share payment rates. 
Among all the parameters investigated, PLFA microbial biomass and 
PMN emerged as highly sensitive indicators in comparison to organic C, 
total N, and POXC. We noticed significant improvements in wet aggre
gate stability and AM Fungi levels when fields employing integrated soil 
health management were directly compared with paired conventionally 
managed fields, regardless of soil texture. However, sites with medium- 
textured soil were more responsive to soil health management than 
moderately fine-textured soils. We observed that both analytical ap
proaches, mixed-effect modeling and LRR comparison between pairs, 
revealed interesting differences in soil health. While the former gave us a 
picture of indicator responses across sites and textures, LRR was useful 
in detecting localized responses to management systems.

Our results showed that integrated soil health management is more 
effective at increasing common soil health indicators’ levels but also 
reveal the relatively weak response of many common indicators when 
examined independently. Researchers must continue to search for in
dicators that are not only responsive to management (such as microbial 
populations, PMN, POXC, and wet aggregate stability in this study) but 
are also useful for making on-farm decisions and predicting environ
mental outcomes. Our dataset illustrated the moderate effectiveness of a 
paired survey approach, including a replicable approach for parsing 
complicated agronomic management into continuous indices of soil 
health intensity.

CRediT authorship contribution statement

Anuradha Garg: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Samuel Kwakye: Writing – review & editing, Supervision, 
Methodology, Data curation. Anna Cates: Writing – review & editing, 
Supervision, Resources, Project administration, Funding acquisition, 
Formal analysis, Conceptualization. Heidi Peterson: Writing – review & 
editing, Supervision, Resources, Project administration, Funding 
acquisition, Conceptualization. Kathryn LaBine: Writing – review & 

A. Garg et al.                                                                                                                                                                                                                                    Geoderma 455 (2025) 117214 

11 



editing, Investigation, Data curation. Greg Olson: Writing – review & 
editing, Investigation, Data curation. Vasudha Sharma: Writing – re
view & editing, Supervision, Resources, Project administration, Funding 
acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Heidi Peterson reports financial support for the project was provided by 
United States Environmental Protection Agency. If there are other au
thors, they declare that they have no known competing financial in
terests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge Minnesota and Wisconsin 
farmers for their collaboration in this on-farm study and cooperation 
during soil sampling on their agricultural lands. This study was con
ducted jointly by the University of Minnesota and the Sand County 
Foundation and funded wholly or in part by the United States Envi
ronmental Protection Agency (EPA) under assistance agreement 
02D01421 to the Sand County Foundation. The contents of this docu
ment do not necessarily reflect the views and policies of the EPA, nor 
does the EPA endorse trade names or recommend the use of commercial 
products mentioned in this document. The authors are also thankful to 
Ms. Madeline Vogel for her contribution to the field investigations 
during the initial years of study, 2021 and 2022.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geoderma.2025.117214.

Data availability

Data will be made available on request.

References

Amsili, J.P., van Es, H.M., Schindelbeck, R.R., 2021. Cropping system and soil texture 
shape soil health outcomes and scoring functions. Soil Secur. 4 (May). https://doi. 
org/10.1016/j.soisec.2021.100012.

Anderson, N.P., Hart, J.M., Christensen, N.W., Mellbye, M.E., Flowers, M.D., 2010. Using 
the nitrogen mineralization soil test to predict spring fertilizer N rate. Oregon State 
University Extension Service. Vol. EM 9020 (issue November). 

Andrews, S.S., Carroll, C.R., 2001. Designing a soil quality assessment tool for 
sustainable. Ecological Society of America 11 (6), 1573–1585.

Angers, D.A., Eriksen-Hamel, N.S., 2008. Full-Inversion Tillage and Organic Carbon 
Distribution in Soil Profiles: A Meta-Analysis. Soil Sci. Soc. Am. J. 72 (5), 
1370–1374. https://doi.org/10.2136/sssaj2007.0342.
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