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Abstract: This study investigates how cover crops (CC) and different application rates of
glyphosate-based herbicide (GBH) may affect soil microbial communities. Our hypothesis
was that the use of CC would promote the presence of certain microbial communities in
soils and mitigate the potential impact of GBH on these communities. CC can promote
biodiversity by increasing plant diversity in fields, while GBH may have non-target effects
on species that utilize the shikimate pathway. Crop managements in an experimental field
in Southern Québec (Canada) consisted in Glyphosate-based Herbicide (GBH) applications
rates at 0.84, 1.67 and 3.33 L ha−1 in corn, soybean and wheat fields cultivated with
Direct Seeding along with CC (DSCC) and at 3.33 L ha−1 in similar crops cultivated with
direct seeding but without CC (DS). DSCC did not significantly impact microbial richness
compared to DS, but did alter specific abundance among prokaryotes and eukaryotes. A
permutational multivariate analysis revealed that the type of crop (soybean, wheat, maize)
significantly influenced the composition of eukaryotic communities in 2018 and 2019, but
not prokaryotic communities. Importantly, the study identifies a cross-effect between CC
and GBH application rates suggesting that herbicide use in soybean plots can influence
Anaeromyxobacter populations. Also, higher abundance of Enoplea and Maxilopoda
were observed in plots with the lower application rate of GBH. Both eukaryotes group
are known to be sensitive to crop management. These findings emphasize the need for a
holistic approach to agricultural practices, considering the combined effects of both CC and
GBH application rates on soil microbial health. Ultimately, the study calls for sustainable
agricultural practices that preserve microbial diversity, which is essential for maintaining
ecosystem services and soil health.

Keywords: cover crops; richness index; abundance index; prokaryote; eukaryote; soil
microorganisms content

1. Introduction
Soil degradation remains a major issue worldwide whereas approximately 33% of

agricultural lands are currently in a precarious situation [1,2]. Soil degradation can be
linked to compaction, loss of fertility, limitation of bioavailable nutrients needed by crop
plants, poor water infiltration and increased salinity [1–3]. The FAO emphasizes that
the loss of soil resources and functions can be avoided with sustainable practices [1].
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Conventional agriculture with mechanical tillage such as ploughing is still a widely used
soil management practice and is largely responsible for soil degradation [4–6]. To challenge
this issue, conservation agriculture (CA) has been put forward [7–9]. CA is designed to
assure biodiversity and natural biological processes in order to assure soil sustainability
and to increase agricultural productivity [7]. Limiting tillage and maintaining a permanent
vegetal cover are two out of the three pillars of this approach [9,10]. Maintaining crop
residues on the soil is a largely used approach and has amply demonstrated its potential
for limiting erosion in direct seeding systems (DS) [8,9]. By considerably reducing tillage,
DS remain vulnerable to surface soil compaction, limiting field operations and influencing
soil structure [11,12]. The problems of soil compaction observed in DS could also influence
soil microbiota [13–15]. Healthy, fertile soil provides greater resilience to biotic and abiotic
stresses, while sustaining high productivity over the long term [16]. Soil productivity is
closely linked to the biodiversity of its biota [14,17]. Prokaryotes and Eukaryotes organisms
are known to be the cornerstone for maintaining soil functions and availability of essential
nutriments for crops [15,18]. Soil organisms community are sensitive to soil management,
making them early indicators for interpreting the level of disturbance or benefit according
to a given agricultural management [16].

The main objective of this research is to observe whether the use of cover crops
(CC) combined with different application rates of glyphosate-based herbicides (GBH) can
influence soil microbiota compared to DS without CC. Our hypothesis is that the use of
CC may have a positive influence on the richness, abundance, and composition of certain
microbial communities in soils of glyphosate tolerant (GT) soybean and corn fields. In
addition, CC could also mitigate the impact of GBH on soil microorganisms, depending on
the application rates compared to DS without CC.

CC has the property of increasing the root diversity present in soils [19–21], which
produces a wider range of products from plant exudation and senescence. This promotes
the heterogeneity of food resources and diversify microhabitats, which leads to greater
diversity in soil biota [17]. The presence of CC also promotes higher soil aggregation,
which can further contribute to increased microbiota diversity [14,17,20]. On the other
hand, non-selective herbicides such as glyphosate-based ones are frequently used in no-till
farming [6,22]. At certain application rates, their use may have a negative impact on soil
microorganisms [23–25], which can have an antagonistic effect on the benefits expected
from the use of cover crops. Fungi and a limited number of microorganisms (bacteria and
protozoa) possess the shikimate pathway and amino acid synthesis targeted by GBH [26],
meaning they may be affected by exposure to GBH. Some studies suggest that the use
of CC has the potential to capture some of the applied GBH, thus reducing the presence
of glyphosate in soils and mitigating their impact on prokaryotic populations [25]. The
originality of this study lies in the fact that few studies have compared species richness and
relative abundance in soil between DS and DSCC and even fewer have investigated the
combined effect of CC use with different GBH application rates.

2. Materials and Method
2.1. Experimental Design

The project was carried out over two years (2018 and 2019) in an open field at the
Grain Research Center (CEROM) at St-Mathieu-de-Beloeil, Quebec, Canada (45.5828 N,
−73.2374 W). Soil sampling was carried out with an auger prior to plot establishment
to determine the soil mineral content on the 0–20 cm horizon with a Mehlich 3 extrac-
tion [27] (Figure 1). The soil type at the site is a humic Gleysol with a heavy clay tex-
ture (Figure 1). The experimental design included three crops in rotation (soybean-corn-
wheat). Four different weed management with application of GBH (Roundup Ready
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Wheatermax®) (CEROM, St-Mathieu-de-Beloeil, QC, Canada) were applied [DS 3.3: di-
rect seeding without CC + 3.3 L ha−1 in 2 applications (1804 g a.i), DSCC 3.3: direct
seeding with CC + 3.3 L ha−1 in 2 applications (1804 g a.i), DSCC 1.67: direct seeding
with CC + 1.67 L ha−1 in 2 applications (902 g a.i) and DSCC 0.84: direct seeding with
CC + 0.84 L ha−1 in two applications (451 g a.i)]. Overall, this experimental setting rep-
resents twelve different cropping practices replicated four times for a total of 48 plots
arranged on four randomized complete blocks (Figure 1). The tweed managements were
T1: Corn DS 3.33, T2: Corn DSCC 3.33, T3: Corn DSCC 1.67, T4: Corn DSCC 0.84, T5:
Soybean DS 3.33, T6: Soybean DSCC 3.33, T7: Soybean DSCC 1.67, T8: Soybean DSCC 0.84,
T9: Wheat DS 3.33, T10: Wheat DSCC 3.33, T11: Wheat DSCC 1.67 and T12: Wheat DSCC
0.84. Each plot measured 9 m × 20 m with a distance of 2.50 m between each plot and 12 m
between each block. The cultivars used and sowing dates are shown in Figure 1 and have
been defined according to the recommendations of the Quebec Ministry of Agriculture,
Fisheries and Food (MAPAQ) agronomists.

GT corn and soybean cultivars were used in this study. Two sequential GBH applica-
tions were realized (12 May and 3 June 2018, and 12 May and 13 June in 2019 in corn plots;
3 June and 27 June in 2018 and 18 May and 24 June in 2019 in soybean plots). Embutox at
2.25 L ha−1 was applied 6 June 2018, and 2019 in wheat plots.

Corn plots were fertilized with 95 kg ha−1 of N added 29 June 2018, and 90 kg ha−1 of
N and 60 kg ha−1 of P added 28 June 2019. In wheat plots, 50 kg ha−1 of N and 65 kg ha−1

of P were added 9 May with an additional 60 kg ha−1 of N 20 June 2018. In 2019, 90 kg
ha−1 of N was added June 6th in wheat plots. Soybean plots were not fertilized in 2018 and
2019. The cover crops sown in the DSCC plots are presented in Figure 1. The cover crops
were sown in August in wheat plots sown after the harvest (wheat harvest: 10 August 2018
and 15 August 2019). The autumn cover crops were sown a few weeks before the harvest
of soybean (soybean harvest: 5 October 2018 and 15 October 2019) and corn (corn harvest:
12 November 2018 and 27 October). No cover crop was sown in DS plots.2.2. Prokaryotes
and eukaryotes content in soil.

2.1.1. Soil Sampling

Three soil samples were collected in 2018 and 2019 with an auger in the 0–20 cm
horizon in each plot. The sampling periods used for the metagenomic analysis took place
4 November 2018, and 24 October 2019 in order to obtain a picture of the microorganism
communities at the end of the production season and close to the crop harvesting period.
The soil cores were then homogenized and kept at a temperature of −20 ◦C until analyses.

2.1.2. Soil Physicochemical Analyses

The elemental contents were determined using the Mehlich-3 extraction method for
phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), boron (B),
copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), sodium (Na), nickel (Ni), cadmium (Cd),
chromium (Cr), cobalt (Co), and lead (Pb) [27]. All elemental contents were quantified
using an inductively coupled plasma-optical emission spectrometer (ICP-OES; Perkin
Elmer Optima 4300DV, Perkin Elmer Inc., Waltham, MA, USA).

2.1.3. DNA Extraction

All soil samples were then ground and sieved through a 2 mm screen after having
been dried at room temperature for 72 h. From each soil sample, 400 mg of soil were used
as sub-samples for DNA extraction. The extraction was executed based on the instruction
provided by FastDNA SPIN Kit for Soil commercial kit (MP Biomedicals, Solon, OH, USA).
Elution solution of 100 µL (pyrogen and DNase-free distilled water) including eluted DNA
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samples were prepared. Quality control of the DNA samples and the DNA quantification
were carried out according to the procedure recommended in a previous study [28].

2.1.4. Metagenomic Analyses

Molecular counting was carried out using qPCR targeting the V6–V8 regions of bac-
terial 16S and fungal 18S rRNA. Amplification was performed with the eub338/eub518
primers for bacteria and FF390/FR1 primers for total fungi, using the SYBR® Green qPCR
master mix (Qiagen, Toronto, ON, Canada). Detection was repeated twice on a CFX96
Touch System device (Biorad, Nicosia, Cyprus). Results are expressed as amplification
units (A.U.) per gram of dry soil. It should be noted that the targeted genes can be de-
tected multiple times in a single organism and at varying levels between organisms during
quantification, both for bacterial (16S rRNA) and fungal (18S rRNA) organisms. Detection
systems operate within a 4-log detection range with an efficiency rate of 89.1% (R2 = 0.99)
for total bacteria and 91.7% (R2 = 1) for total fungi.

Metagenomic analyses evaluated bacterial and eukaryotic diversity by targeting the
V3–V4 region of bacterial 16S and the V4 region of eukaryotic 18S rRNA. Amplification
was conducted using a dual-indexed PCR approach with primers 515F and 806RB for
prokaryotes, and E572F/E1009R for eukaryotes [29]. Libraries were sequenced in a paired-
end format, with 300 base pair reads on each side of the DNA strand using an Illumina
MiSeq high-throughput sequencer. These analyses were performed at the genomic analysis
platform of the Institute of Integrative Biology and Systems (IBIS) at Université Laval
(Quebec, QC, Canada).

2.1.5. Bioinformatics Analyses

Bioinformatics analyses were conducted using the bioinformatics platform of the
Microbial Ecology Laboratory at the Research and Development Institute for the Agri-
Environment. The DADA2 approach (Callahan et al., 2016) was employed to assess
sequence quality and identify amplicon sequence variants (ASVs) within the QIIME 2 plat-
form [30,31]. Taxonomic identification of ASVs was performed using the following refer-
ence databases: Greengenes 13.5 for 16S, PR2, 18S, SILVA and for 16S and 18S rRNA [32–34].
Sequences were rarefied to 10,000 per sample prior to statistical analyses [28].

2.1.6. Statistical Analyses

All analyses on metagenomic data were performed with the R software version 4.1.1 (R
Core team). A Shapiro-Wilk test was performed to test the normal distribution of residuals.
An analysis of variance (ANOVA) was performed when distributions of residuals were
normal, and a Wilcoxon analysis was performed for non-parametric distribution. The
phyloseq package was used for Shannon index, Chao 1, Observed index evenness and
composition analyses [35]. The microorganisms composition was defined through an
ordination using nonmetric multidimensional scaling of the Bray-Curtis (Figure 2). Then,
the eukaryotic and prokaryotic composition were assessed with permutational multivariate
analysis of variance (PERMANOVA) and the adonis function [36]. The vegan package
was used to performing the adonis function [36]. The abundance of the main genus
between managements were identified with the ampvis2 package [37] and the Operational
Taxonomic Units [38]. In this study, only the 25 more abundant taxa were used for the
prokaryotic taxonomic groups. Genus was the most precise identified taxonomic unit used
here whenever possible for eukaryotes and prokaryotes.
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Figure 2. Principal coordinates analysis (PCoA) using Bray-Curtis dissimilarity test on procaryotes and eucaryotes composition in soil between the different crop 
managements in corn, soy and wheat. An analysis with contrast was performed to assess significant difference between DS and DSCC plots. Also, a univariate 
analysis was performed to assess significant difference between all crops managements. A threshold of 0.05 was used to assessed statistical significance for all 
statistical analyses. A post-hoc letters test was performed when statistical significances were observed. Then, relative abundance of all taxonomic group was 
represented by phyloseq bar plots for each crop for 2018 and 2019. 

Figure 2. Principal coordinates analysis (PCoA) using Bray-Curtis dissimilarity test on procaryotes and eucaryotes composition in soil between the different crop
managements in corn, soy and wheat. An analysis with contrast was performed to assess significant difference between DS and DSCC plots. Also, a univariate
analysis was performed to assess significant difference between all crops managements. A threshold of 0.05 was used to assessed statistical significance for all
statistical analyses. A post-hoc letters test was performed when statistical significances were observed. Then, relative abundance of all taxonomic group was
represented by phyloseq bar plots for each crop for 2018 and 2019.
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3. Results
3.1. Soil Organisms Content Index Values

In 2018, no significant difference was observed for the eukaryotic richness and diversity
between crop managements according to total eukaryotes Observed index, the Shannon
index and the Chao 1 index (Figure 3A). No significant differences were assessed based
on the total eukaryotes Observed index, the Shannon index and the Chao 1 index in 2019
(Figure 3B).
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crop managements (DS 3.33, DSCC 0.84, DSCC 1.67 and DSCC 3.33).

Similarly, it was not possible to observe any significant difference on the prokaryotic
richness over two years based the Observed index, Shannon index (5.82 ± 0.11 in DS and
Chao 1 index in 2018 (Figure 3C). Also in 2019, no significant difference was observed based
on the prokaryotic Observed index, Shannon index and Chao 1 index (Figure 3D).

In 2018 and 2019, no significant difference was observed between crop managements
based on Evenness index for eukaryotes and prokaryotes (Figure 4).
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3.2. Microbiota Composition

According to the results of the PERMANOVA analysis; only the type of cultivated
crop seemed to have a significant effect on the eukaryotic composition in 2018 (p = 0.016)
and 2019 (p = 0.001) (Table 1). The different managements and the mixed effect of the type
of crops*managements seemed to have no significant effect on the eukaryotic composition
for both years (Table 1). In 2018 and 2019; the type of crops; the different managements
and the mixed effect of crops*managements seemed to have no significant effect on the
prokaryotic composition (Table 1).

3.3. Abundance of Taxonomic Group

Based on the contrast analysis, the only significant differences in eukaryotes were ob-
served for the class Maxillopoda in soybean plots (p = 0.0176) between DS plots and
DSCC plots in 2018 (Table 2). In 2019, Significant differences between DS plots and
DSCC plots were observed for the Other Eukaryota (p = 0.0364) with more striking dif-
ference in wheat plots (p = 0.001) (Table 2). Differences were also observed for the class
Cephalopoda (p = 0.0193), for Insecta in the corn plots (p = 0.0049) and for the class Maxil-
lopoda (p = 0.0482) between DS plots and DSCC plots in 2019 (Table 2).
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Table 1. Permutational multivariate analysis of variance (PERMANOVA) of the eukaryotic and
prokaryotic composition between crops management in 2018 and 2019.

Permanova
Eukaryotes 2018 Eukaryotes 2019

Df F.Model r2 p Value Df F.Model r2 p Value

Crops 2 1.3682 0.0577 0.016 * 2 1.7259 0.0716 0.001 *
Managements 3 0.9209 0.0583 0.758 3 0.8662 0.0539 0.921

Crops*Managements 6 0.9830 0.1244 0.539 6 1.0261 0.1277 0.333

Permanova
Prokaryotes 2018 Prokaryotes 2019

Df F.Model r2 p value Df F.Model r2 p value

Crops 2 0.8696 0.0376 0.736 2 0.8830 0.0383 0.744
Managements 3 0.8946 0.0580 0.756 3 0.8617 0.0560 0.875

Crops*Managements 6 0.9784 0.1268 0.537 6 0.9671 0.1257 0.583
Note: The * indicate that the main effect of crops, crop managements or the mixed effect of crops* crop manage-
ments are significant based on the p value threshold (p < 0.05).

Table 2. Contrast analysis of eukaryotic content between plots with (DSCC) or without cover crops
(DS) for 2018 and 2019.

2018 2019

Taxon DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

Eukaryota

Cephalopoda F value na na na na 6.00 4.5 4.5 0.00
p value na na na na 0.0193 * 0.0408 * 0.048 * 1.00

Eimeriidae
F value 0.1412 0.8305 0.0169 0.1525 0.0013 0.3802 0.0951 0.9734
p value 0.7093 0.3682 0.8971 0.6984 0.9718 0.5414 0.7596 0.3304

Enoplea F value 0.0212 0.1509 0.177 0.081 3.2424 1.0483 0.552 1.828
p value 0.885 0.6999 0.6765 0.7776 0.0801 0.3127 0.4623 0.1848

Insecta
F value na na na na 3.00 0.00 0.00 9.00
p value na na na na 0.0918 1.00 1.00 0.0049 *

Malacostraca
F value 0.3333 1.00 0.00 0.00 na na na na
p value 0.5673 0.324 1.00 1.00 na na na na

Maxillopoda F value 2.6844 6.1875 0.0015 0.0968 4.1841 0.028 1.3172 6.5665
p value 0.11 0.0176 * 0.9689 0.7575 0.0482 * 0.8681 0.2587 0.0147

Pirsonia Clade
F value 1.3631 0.1272 0.2687 1.3158 1.1757 1.2491 0.4289 2.0031
p value 0.2507 0.7234 0.6074 0.2589 0.2854 0.2711 0.5167 0.1656

Reticulomyxidae F value 0.3333 0.00 1.00 0.00 0.3996 1.1989 0.00 0.00
p value 0.5673 1.00 0.324 1.00 0.5313 0.2808 1.00 1.00

Other
Eukaryota

F value 0.3933 0.2379 0.299 0.0027 4.7244 0.016 12.8407 0.0948
p value 0.5345 0.6287 0.5879 0.959 0.0364 * 0.9 0.001 * 0.7599

Fungi

Agaricomycetes F value 0.7723 0.5021 0.7052 0.0007 0.8307 0.0016 0.0016 2.4922
p value 0.3853 0.4832 0.4066 0.9792 0.3681 0.9687 0.9687 0.1232

Saccharomucetes
F value 0.3982 0.2602 0.1327 0.8973 0.3323 1.0044 0.00 0.00
p value 0.532 0.6131 0.7177 0.3498 0.5679 0.3229 0.9947 0.9976

Sordariomycetes F value 0.0282 0.7358 0.1935 0.0161 0.0033 0.0183 0.8453 0.4687
p value 0.8675 0.3967 0.6626 0.8998 0.9545 0.8932 0.364 0.498

Other Fungi F value 0.279 0.5934 0.1072 0.2228 0.0097 0.6375 0.0292 0.6364
p value 0.6006 0.4461 0.7452 0.6398 0.9223 0.4298 0.8653 0.4303

Note: The * indicate significant difference between direct seeding plots with cover crops (DSCC) or without cover
crops (DS) based on the p value threshold (p < 0.05). The “na” means not applicable.
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The results of contrast analyses for the prokaryotes showed a difference for the genus
Anaeromyxobacter between DS plots and DSCC plots (p = 0.015), particularly in the
soybean plots (p = 0.0062) in 2018 (Table 3). For the prokaryotes in 2019, the result of the
analysis with contrast showed significant differences for the genus the genus Nistropira
(p value = 0.0482), and the genus Rhodoplanes (p = 0.0205) between DS plots and DSCC
plots. The difference for the Nistropira is more striking in the corn plots (p = 0.0357) in 2019.

Table 3. Contrast analysis of prokaryotic content between plots with (DSCC) or without cover crops
(DS) for 2018 and 2019.

2018 2019

Taxon DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

Aeromicrobium
F value 0.2345 0.093 0.3358 0.0021 0.4448 0.0338 0.1551 0.8932
p value 0.6311 0.7621 0.5658 0.9638 0.5091 0.8552 0.6961 0.3509

Agromyces F value 0.2786 1.1231 0.1559 0.2919 0.3765 1.1043 0.4964 1.9856
p value 0.6008 0.2963 0.6953 0.5923 0.5433 0.3003 0.4856 0.1674

Anaeromyxobacter F value 6.5229 8.4698 0.7623 0.4099 0.3907 0.0342 0.7139 0.1785
p value 0.0150 * 0.0062 * 0.3884 0.5261 0.5359 0.8544 0.4037 0.6752

Arthrobacter
F value 1.0408 2.0036 2.8977 2.1911 0.6268 0.9421 0.6153 0.1473
p value 0.3144 0.1655 0.0973 0.1475 0.4337 0.3382 0.4379 0.7034

Balneimonas
F value 0.0039 0.5802 0.5395 0.0067 0.806 0.5842 0.4341 0.0174
p value 0.9503 0.4512 0.4674 0.9354 0.3753 0.4497 0.5142 0.8959

Candidatus
Nitrososphaera

F value 0.625 3.5294 1.7767 3.3941 0.5934 1.2691 0.2494 0.085
p value 0.4344 0.0684 0.1909 0.0737 0.4461 0.2674 0.6206 0.7722

DA101
F value 0.2995 0.8562 0.0998 0.0861 0.0912 0.0021 0.6403 0.0533
p value 0.5876 0.361 0.7539 0.7709 0.7643 0.9634 0.4289 0.8188

Gemmata
F value na na na na 5.4564 2.85 1.4945 1.2886
p value na na na na 0.0252 0.1 0.2295 0.2638

Hyphomicrobium F value 0.1253 0.898 0.2804 1.0634 0.8193 2.9984 0.2897 0.4928
p value 0.7254 0.3496 0.5997 0.3093 0.3714 0.0919 0.5938 0.4872

Iamia
F value 1.0891 1.5793 0.7708 0.107 0.1047 0.0365 0.0015 0.5087
p value 0.3036 0.217 0.3858 0.7455 0.7482 0.8496 0.9697 0.4803

Kaistobacter
F value 0.3799 0.0067 2.1368 0.2269 2.5859 0.0076 4.2604 0.4021
p value 0.5415 0.935 0.1525 0.6367 0.1166 0.9311 0.0463 * 0.53

Kribbella
F value 0.2361 2.7448 3.787 0.305 2.0322 1.0765 1.9017 0.0028
p value 0.63 0.1063 0.0595 0.5842 0.1626 0.3064 0.1764 0.9584

Marmoricola
F value 0.3086 0.0689 1.5718 0.0009 2.131 2.5889 0.1189 0.3302
p value 0.582 0.7945 0.218 0.9769 0.153 0.1164 0.7323 0.5691

Methylibium F value 1.4876 0.1639 4.0987 0.243 0.677 0.0181 0.0463 1.1569
p value 0.2305 0.6879 0.0504 0.6251 0.416 0.8938 0.8309 0.2893

Mycobacterium F value 0.0019 1.4361 0.4214 0.225 0.0215 0.0286 0.0247 0.0584
p value 0.9657 0.2386 0.5204 0.6381 0.8843 0.8666 0.876 0.8103

Nitrospira F value 0.809 0.1569 0.2015 2.2652 4.1841 0.4003 0.5294 4.7642
p value 0.3744 0.6944 0.6562 0.141 0.0482 * 0.5309 0.4716 0.0357 *

Nocardioides
F value 0.01 1.6356 0.871 0.2688 0.5821 0.1636 0.792 0.0007
p value 0.9211 0.2091 0.3569 0.6073 0.4505 0.6882 0.3794 0.9786

Pedomicrobium
F value 0.0077 0.0026 0.0848 0.2438 0.6524 1.7834 0.5823 0.4893
p value 0.9306 0.9599 0.7726 0.6245 0.4245 0.1901 0.4504 0.4887

Pirellula
F value 0.0129 0.0011 0.3481 0.1816 0.01 0.088 0.2206 0.352
p value 0.9102 0.974 0.5589 0.6725 0.921 0.7684 0.6414 0.5567

Pseudonocardia
F value 0.0523 1.3196 0.0251 0.83 0.2804 4.3372 1.0254 0.0234
p value 0.824 0.2582 0.875 0.3683 0.5997 0.0445 * 0.318 0.8794

Rhodoplanes F value 0.345 0.1975 0.0197 0.1872 5.8762 3.0914 1.6575 1.3293
p value 0.5606 0.6594 0.8892 0.6678 0.0205 * 0.0872 0.2062 0.2565
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Table 3. Cont.

2018 2019

Taxon DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

Soybean Wheat Corn
DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

DS vs.
DSCC

Skermanella
F value 0.0046 0.3633 0.5194 0.0556 0.8042 0.3513 1.9887 0.2022
p value 0.9461 0.5505 0.4758 0.8149 0.3758 0.5571 0.1671 0.6557

Solirubrobacter
F value 1.4444 2.1522 0.5978 0.0252 0.1223 0.0963 0.4421 0.0631
p value 0.2373 0.151 0.4445 0.8749 0.7286 0.7581 0.5103 0.8031

Steroidobacter
F value 0.6637 0.1424 0.0778 0.5696 0.0761 2.5559 0.0976 3.1121
p value 0.4206 0.7081 0.7819 0.4553 0.7842 0.1186 0.7565 0.0862

Streptomyces F value na na na na 0.6263 0.0301 0.3006 0.4209
p value na na na na 0.4339 0.8631 0.5869 0.5206

Note: The * indicate significant difference between direct seeding plots with cover crops (DSCC) or without cover
crops (DS) based on the p value threshold (p < 0.05).

In 2018, no significant difference was observed on the abundance of eukaryotic taxon-
omy groups between crop managements (Figure 5). For the prokaryotes, one difference was
observed for the abundance of the Anaeromyxobacter genus between crop managements
(p = 0.0331) (Figure 6). Higher content was measured in DSCC 1.67 plots and DSCC 3.33
plots compared to DS 3.33 plots (p = 0.0189 and p = 0.0317 respectively) (Figure 6).
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In 2019, significant differences were observed for the Enoplea family (p = 0.0494) and
the Agaricomycetes class (p = 0.0341) (Figure 5). A more abundant content of Enoplea was
observed in DSCC 0.84 plots compared to DSCC 3.33 plots (p = 0.0065). The DSCC 3.33
plots had higher abundance of Agaricomycetes compared to DSCC 1.67 plots (p = 0.0050)
(Figure 5). Also, one difference was observed for the prokaryotes (Figure 6). Indeed, the
Marmoricola genus was more abundant in DSCC 0.84 plots compared to DS 3.33 plots
(p = 0.0162) and to DSCC 1.67 plots (p = 0.0099).
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Over 2018 and 2019 years, the relative abundance of each taxon was calculated for the
different crops (Figure 7A). In the case of eukaryotes, the highest proportion is attributed
to the fungus group where the genus Sordariomycetes is the more abundant (67.3 ± 0.1%)
followed by other unidentified fungi (20.3 ± 0.5%) and Agaricomycetes (0.22 ± 0.02%).
The other eukaryotes represented less than 6% of the total eukaryotic composition in soil
and where the more abundant taxon is Pirsonia Clade (5.2 ± 0.2%) followed by other
unidentified Eukaryota (3.0 ± 0.1%). The relative abundance of the other taxonomic groups
represent less than 1%. Although it was not possible to observe any different relative
abundance between crop mangements in corn plots, few differences have been observed in
wheat and soybean plots. In soybean plots, a difference was observed for Agaricomycetes
between the different crop managements (p = 0.0244) and the highest relative abundance
values were observed in DSCC 0.84 plots (0.41 ± 0.02%) and the lowest values in DSCC
3.33 plots (1.43 ± 0.35%) and DS 3.33 plots (1.04 ± 0.19%) (Figure 7A). In wheat plots,
one difference was observed between crop managements for the Sordariomycetes genus
(p = 0.0241) (Figure 7A). In wheat plots, the highest relative abundance values were mea-
sured in the DSCC 3.33 plots (70.6 ± 4.5%) and the lowest in the DS 3.33 plots (63.7 ± 1.9%).

Relative abundance was also calculated for the 25 most abundant prokaryotes taxa
where no differences were observed between crop managements in corn and soybean plots
(Figure 7B). Among them, Candidatus Nitrososphaera have the higher relative abundance
value (30.9 ± 0.4%), followed by Arthobacter (7.5 ± 0.2%), Rhodoplanes (7.2 ± 0.1%) and
Pedomicrobium (6.7 ± 0.1%). All other groups of prokaryotes have a specific contribution
of 5% or less of total abundance. Differences were only observed in the wheat plots between
the different crop managements. In wheat plot, a difference was observed for the relative
abundance of Arthrobacter (p = 0.046). The highest value was measured in the DSCC 3.33
plots (7.6 ± 0.4%) and the lowest values in the DS 3.33 plots (5.6 ± 1.7%2) (Figure 7B).
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3.4. Elementary Content in Soil

The data obtained from the elemental contents in the soils after two years show
differences between crop managements and types of crops. In corn, lower Mn content was
observed in DSCC 0.84 plots (Table 4), and higher Co content in DSCC 1.67 plots (Table 4).
In wheat, Mg content was lower in DSCC 1.67 plots (Table 4). Mn content was also lower
in DSCC 1.67 plots, but also in DSCC 0.84 plots (Table 4). The only lower content observed
in DS 3.3 plots was that of Ni (Table 4). The greatest number of differences, however, was
observed in soybean crops, where the contents of K, Mg, B, Fe, Mn, Zn, Ni, and Cd were
different between crop managements (Table 4).
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Table 4. Elementary contents between crop managements with different glyphosate-based herbicides
application rates.

Element (mg * kg−1)
Corn Soybean

DS 3.3 DSCC 3.3 DSCC 1.67 DSCC 0.84 p Value DS 3.3 DSCC 3.3 DSCC 1.67 DSCC 0.84 p Value

P 27.72 ± 14.94 10.64 ± 1.32 12.96 ± 1.81 22.22 ± 7.66 0.4636 12.30 ± 0.59 11.32 ± 1.29 13.02 ± 1.77 8.58 ± 0.67 0.0723
K 313.17 ± 10.33 304.33 ± 12.39 327.33 ± 13.45 314.83 ± 10.22 0.5875 333.00 ± 4.45 a 334.33 ± 3.37 a 321.33 ± 8.80 ab 311.67 ± 5.55 b 0.0424
Ca 2989.67 ± 65.64 2908.33 ± 91.01 2896.33 ± 85.88 2874.50 ± 35.15 0.7017 2850.17 ± 151.18 3019.83 ± 100.57 2673.50 ± 75.01 2934.50 ± 49.47 0.0789
Mg 797.33 ± 30.72 850.83 ± 18.17 814.17 ± 8.89 826.50 ± 9.44 0.2702 717.67 ± 7.47 c 739.33 ± 33.56 bc 777.33 ± 11.97 ab 828.33 ± 7.22 a 0.0022
AL 1055.00 ± 11.19 1056.83 ± 5.72 1050.17 ± 5.87 1038.00 ± 8.35 0.3735 1050.33 ± 7.28 1045.83 ± 5.59 1066.33 ± 9.23 1043.83 ± 12.82 0.3192
B 0.753 ± 0.036 0.696 ± 0.010 0.765 ± 0.012 0.723 ± 0.027 0.2008 0.685 ± 0.048 b 0.781 ± 0.029 a 0.651 ± 0.013 b 0.716 ± 0.015 ab 0.0384

Cu 11.42 ± 0.37 11.60 ± 0.47 11.28 ± 0.20 10.93 ± 0.17 0.5445 10.75 ± 0.18 11.35 ± 0.29 11.30 ± 0.20 10.75 ± 0.18 0.1020
Fe 216.33 ± 5.35 217.83 ± 2.65 216.17 ± 4.64 233.17 ± 12.14 0.2493 226.33 ± 7.09 a 215.67 ± 2.25 ab 229.33 ± 5.90 a 204.50 ± 2.58 b 0.0077
Mn 24.67 ± 2.02 a 19.25 ± 1.57 b 25.93 ± 1.44 a 19.17 ± 1.40 b 0.0115 17.44 ± 3.85 b 24.43 ± 2.11 a 17.27 ± 0.92 b 26.10 ± 1.40 b 0.0249
Zn 2.79 ± 0.30 2.66 ± 0.17 2.56 ± 0.11 2.49 ± 0.06 0.6816 2.34 ± 0.05 b 2.30 ± 0.02 b 2.50 ± 0.05 a 2.09 ± 0.06 c 0.0001
Na 46.02 ± 2.04 44.73 ± 1.82 43.63 ± 1.56 44.58 ± 1.05 0.7897 41.85 ± 1.17 46.70 ± 1.46 47.20 ± 1.98 47.10 ± 1.59 0.0739
Ni 1.38 ± 0.08 1.40 ± 0.05 1.40 ± 0.05 1.44 ± 0.02 0.9138 1.57 ± 0.13 a 1.33 ± 0.04 bc 1.47 ± 0.03 ab 1.12 ± 0.05 c 0.0031
Cd 0.089 ± 0.004 0.091 ± 0.003 0.091 ± 0.003 0.092 ± 0.002 0.8851 0.093 ± 0.001 a 0.090 ± 0.003 a 0.087 ± 0.002 ab 0.081 ± 0.002 c 0.0226
Cr 0.294 ± 0.005 0.293 ± 0.007 0.292 ± 0.005 0.284 ± 0.010 0.7896 0.286 ± 0.004 0.291 ± 0.006 0.281 ± 0.006 0.285 ± 0.005 0.5929
Co 0.489 ± 0.042 ab 0.414 ± 0.027 b 0.523 ± 0.027 a 0.399 ± 0.034 b 0.0441 0.406 ± 0.056 0.498 ± 0.035 0.394 ± 0.023 0.488 ± 0.030 0.1455
Pb 3.69 ± 0.24 3.69 ± 0.22 3.76 ± 0.11 3.65 ± 0.17 0.9820 3.64 ± 0.18 3.83 ± 0.21 3.70 ± 0.15 3.30 ± 0.16 0.2201

Element (mg * kg−1)
Wheat

DS 3.3 DSCC 3.3 DSCC 1.67 DSCC 0.84 p value

P 12.84 ± 3.17 11.15 ± 1.15 12.36 ± 1.04 11.77 ± 1.02 0.9626
K 311.88 ± 9.17 322.38 ± 6.08 340.88 ± 12.86 332.00 ± 8.25 0.1779
Ca 2972.25 ± 44.77 2931.00 ± 102.28 2818.25 ± 71.30 2887.75 ± 45.92 0.4627
Mg 814.625 ± 6.47 a 794.5 ± 8.23 ab 775.38 ± 8.71 b 809.88 ± 11.11 a 0.0163
AL 1044.13 ± 8.51 1049.25 ± 9.42 1045.63 ± 9.58 1046.13 ± 9.13 0.9826
B 0.72 ± 0.02 0.74 ± 0.02 0.69 ± 0.03 0.67 ± 0.02 0.1314

Cu 11.16 ± 0.30 11.24 ± 0.24 11.06 ± 0.16 11.09 ± 0.23 0.9534
Fe 211.375 ± 2.76 222.88 ± 8.23 220.13 ± 3.93 219.25 ± 5.51 0.5023
Mn 25.79 ± 1.12 a 25.08 ± 3.60 a 19.39 ± 1.33 b 20.6 ± 1.33 b 0.0020
Zn 2.48 ± 0.16 2.57 ± 0.11 2.54 ± 0.09 2.47 ± 0.14 0.9270
Na 45.38 ± 1.76 44.24 ± 0.94 42.03 ± 0.99 41.88 ± 1.06 0.1478
Ni 1.25 ± 0.04 b 1.35 ± 0.06 ab 1.47 ± 0.06 a 1.32 ± 0.06 ab 0.0463
Cd 0.086 ± 0.008 0.088 ± 0.002 0.089 ± 0.002 0.085 ± 0.004 0.6212
Cr 0.302 ± 0.010 0.288 ± 0.008 0.281 ± 0.006 0.295 ± 0.004 0.2485
Co 0.517 ± 0.026 0.486 ± 0.028 0.440 ± 0.023 0.449 ± 0.022 0.1368
Pb 3.59 ± 0.16 4.00 ± 0.22 3.73 ± 0.13 3.51 ± 0.14 0.2050

Note: The * and different small letters indicate that mean values are significantly different between crop manage-
ments based on the p value threshold (p < 0.05).

However, the results from the ANOVA analyses with contrasts show that significant
differences were only observed in wheat plots between DSCC plots and DS plots, regardless
of GBH application rates (Table 5). These differences were observed for only three elements:
P, K, and Zn (Table 5). K and Zn content were higher in the DSCC plots compared to the
DS plots. In contrast, higher P content was observed in DS plots (Table 5).

Table 5. Contrast analysis of elementary contents between crop managements for 2018 and 2019.

Element
(mg × g−1)

DS vs. DCC Corn DS vs. DSCC Soybean DS vs. DSCC Wheat DS vs. DSCC

F Value p Value F Value p Value F Value p Value F Value p Value

P 0.0261 0.8729 1.1465 0.2934 0.7935 0.3806 4.9135 0.0349 *
K 0.0476 0.8288 1.6846 0.2049 0.3530 0.5572 5.0182 0.0332 *
Ca 1.8144 0.1888 0.5848 0.4508 0.3518 0.5579 0.6945 0.4117
Mg 0.1278 0.7234 0.1517 0.6998 2.3576 0.1359 1.6951 0.2035
Al 0.4915 0.4891 3.3792 0.0767 0.7900 0.3817 0.0871 0.7701
B 0.7897 0.3817 0.6611 0.4230 0.3544 0.5564 0.0188 0.8918

Cu 0.0719 0.7906 1.6083 0.2152 0.1522 0.6994 0.1522 0.6994
Fe 0.0288 0.8665 1.4428 0.2397 0.1156 0.7364 1.2717 0.2690
Mn 0.8698 0.3590 0.4034 0.5305 0.1443 0.7069 1.8555 0.1840
Zn 0.0312 0.8610 0.7200 0.4033 0.7200 0.4033 5.4641 0.0268 *
Na 0.1060 0.7471 0.5416 0.4679 1.7681 0.1944 1.3674 0.2521
Ni 0.0107 0.9183 0.5648 0.4586 0.2285 0.6364 1.0726 0.3092
Cd 0.2332 0.6329 0.2467 0.6233 0.2565 0.6165 0.0263 0.8724
Cr 1.8885 0.1803 2.1776 0.1512 0.2788 0.6017 2.0939 0.1590
Co 1.0200 0.3212 0.6982 0.4105 0.0512 0.8226 1.3122 0.2617
Pb 0.2854 0.5974 0.0093 0.9240 0.3794 0.5429 2.6538 0.1145

Note: The * indicate significant difference between DSCC crops or DS crops based on the p value threshold
(p < 0.05).
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4. Discussion
4.1. No Significant Difference in Richness and Evenness Along with Crop Managements

The results show that there is no significant difference in eukaryotic and prokaryotic
richness, nor in the diversity and evenness indices (Observed, Shannon, Chao1) between
DS and DSCC crop managements in both 2018 and 2019 (Figure 3A–D and Figure 4). These
results are in line with those observed in a similar geographical and soil context who also
observed that richness was similar between DS and DSCC crop managements at similar
GBH application rates [28]. This could indicate that other environmental or agricultural
factors such as ploughing, climate or crop type, play a more dominant role in the short
term [39,40]. It was observed in a previous study that even after a long-term implantation
of winter crops, the influence of CC could not be distinguished from that of DS, and that
the main benefits in terms of microbiota richness seemed to arise from stopping ploughing
than from using CC [40,41].

4.2. Influence of Crop Type on Prokaryotic and Eukaryotic Composition

The use of PERMANOVA analysis allows for the capture of multivariate effects to
better understand interactions between crop types, crop managements, and microbial
communities. The analysis indicates that crop type has a significant effect on eukaryotic
composition in both 2018 and 2019. This may be explained by the fact that the crop itself
(soybean, wheat, corn) influences the structure of eukaryotic soil communities, likely due
to differences in the rhizosphere associated with each crop [42–44]. The type of crop also
dictates the cover crop (CC) mixture used, which in turn directly affects the content of
certain soil elements. This was particularly observed for P, K, and Zn content in wheat plots
(Table 5). The highest levels were found in DSCC plots compared to DS plots when we
excluded the potential influence of GBH application rates. Crops may affect soil microbiota
through root exudates, plant debris and symbiotic associations, or direct alteration of the
supply of carbon to the soil, nutrient availability and soil structure [45]. It has already
been observed that the use of different maize genotypes can influence the composition of
eukaryotes in the soil, significantly increasing the presence of phytophagous nematodes
and mycorrhizal fungi, compared to a site where maize has not been cultivated [44].
Interestingly, although the different crop managements and crop types appear to influence
the composition of eukaryotic communities, they do not seem to have influenced the fungal
group. It has been observed in the past that fungi, especially arbuscular mycorrhizal fungi,
are much more sensitive to mechanical soil disturbance [46]. In no-till crop managements,
the fungal composition can be maintained through the use of mulch from previous crop
residues, which can serve as both a support and a resource, as is the case in the DS plots of
this study.

Notable effects on specific taxonomic groups

4.2.1. Procaryotes

Significant differences are observed in certain prokaryotic genera, such as Anaeromyxobac-
ter in 2018 or Nistropira and Rhodoplanes in 2019 (Table 3), highlighting that specific
bacterial groups may be sensitive to differences between DS and DSCC crop maage-
ments. The difference for Anaeromyxobacter is greater in soybean plots. This could be
explained by the fact that soybean may influence the nitrogen-fixing bacterial community
and other nitrogen-transforming microbial communities such as Anaeromyxobacter [47,48].
Anaeromyxobacter is a genus of bacteria that plays a role in the biogeochemical cycling
of organic matter, often involved in the reduction of oxygen and other electron acceptors
in soils [49,50]. Soil oxygenation and nutrient availability are key factors in determining
the microbial communities involved in organic matter decomposition, and fluctuations in
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these parameters can influence the distribution and activity of specific microorganisms like
Anaeromyxobacter [51,52].

Similarly, significant differences for Nistropira and Rhodoplanes in 2019 may also
be linked to changes in soil pH, nitrogen availability, or organic matter dynamics under
different management practices [51,53]. The presence of clover in corn plots could have
influenced the presence of Nitrospira which is also supported by the fact that cover crop
mixture containing more legume support bacteria associated with nutrient cycling and
nitrification [54].

4.2.2. Eukaryotes

Significant differences have been observed in 2019 for three taxonomic groups: the
class Cephalopoda, Maxillopoda, and the group of other Eukaryota, between DSCC plots
and DS plots (Table 2). Cephalopoda and Maxillopoda being considered as aquatic or-
ganisms, it is unlikely these species be quite involved in agricultural soil functions. The
relative abundance of these species remains very low (<1%) and negligible compared to
other taxonomic groups observed in the study. Another explanation may originate from
the marine deposits the soil under study is derived from. It is possible that the use of
CC has facilitated the mobility of certain trace compounds and their detection through
metagenomic analysis. However, the link with the use of CC and their abundance is not
obvious in the context of this study. As for the other Eukaryota, the presence of a vegetation
cover and structural and functional root diversity may have increased the resources needed
by certain eukaryotes, thus stimulating the growth of their population [41].

4.3. The Cross-Effect Between CC and GBH Application Rates on Soil Microbiota Content

Our results indicate that GBH application rates have no significant effects on the
richness, uniformity, or composition of eukaryotic and prokaryotic communities in the soils
during the two years studied (2018 and 2019). Some studies reported a reduction in the
biomass, activity or richness of soil microorganisms following the use significantly higher
GBH application rates than those used in this study [55–57]. However, it is important to
highlight that GBH application rates in this study are resembling those generally used
by farmers in Québec. The GBH application rates seem to have more influence on the
abundance of taxonomic group in short term. The relationship between GBH application
rates and microbial diversity is often rate-dependent [58,59]. At lower application rates,
the herbicide might have a subtle effect on microbial communities, possibly reducing
the abundance of sensitive species without causing significant shifts in overall diversity.
However, at higher application rates, more pronounced changes might occur, such as
a decrease in microbial diversity or a shift toward glyphosate-tolerant species. Higher
application rates might lead to the selection of glyphosate-tolerant microorganisms, altering
community dynamics such as a decrease in microbial diversity or a shift toward tolerant
species [58,60]. Also, GBH impact on soil microbial communities might not be immediately
visible but could accumulate over time. Multiple application cycles could lead to long-term
shifts in microbial community structure and function that become apparent after reaching
the threshold at which GBH levels begin to significantly impact soil health and microbial
communities [23].

The cross-effect between CC and GBH appears to be influenced by the type of crops. In
this study, this effect seems more pronounced in soybean crops compared to corn and wheat
crops (Table 4). Soybean plots exhibit greater contrasts in elementary contents with different
crop managements. This is particularly the case for elements essential to crop development,
such as B, Fe, K, Mg, Mn, and Zn (Table 4), as well as certain soil microorganisms [61].
Although it has been shown that the use of CC alone does not explain the differences in
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elementary contents in soybean plots (Table 5), the variations in these contents do not either
follow a GBH application rate-dependent relationship (Table 4). This is particularly true for
B, Mn, Ni, and Zn. In some cases, the content of these elements was even lower in plots
with the lowest GBH application rate (0.84 L ha−1). On the other hand, for other elements
like Mg, the influence of higher GBH application rate seems more obvious. It is well known
that glyphosate has chelation properties [62], which could explain the lower Mg content
in plots with a 3.3 L ha−1 GBH application rate. However, it is still unclear whether it can
influence metal bioavailability in soils, potentially contributing to either increased toxicity
or nutrient limitations for soil organisms and plants [62]. Here, this potential causal link
between GBH application rates and elemental content is not straight forward, which partly
explains why these differences were not observed in wheat or corn crops. This highlights
the importance of the interaction between the effects of GBH application rates and the
legacy left by the type of cover crops used in previous crops. Subsequently, this cross-
effect can significantly influence the abundance of certain microorganisms, as observed in
this study.

The cross-effect between CC and GBH application rates on the Prokaryotes content
Prokaryotes are assumed to be the organisms potentially impacted by different GBH

applications [23,24,60]. While most eukaryotes do not function with the shikimate pathway,
certain bacteria and fungi do, as an essential step of the synthesis of aromatic amino
acids [23,25]. In 2018, the abundance of Anaeromyxobacter was higher in DSCC 3.33 and
DSCC 1.67 plots (Figure 6). As mentioned earlier, Anaetromyxobacter are widely involved
in soil functions and health. The interaction between CC and GBH application rates seems
to have favored certain weeds species, itself being corroborated by a lower weed cover rate
in these plots [63].

Interestingly, higher abundance of Marmoricola was observed in DSCC 0.84 plots
(Figure 6). Marmoricola is a Gram-positive and chemoorganotropic prokaryote genus that
has already been considered in other studies as an interesting indicator for soil microbiota
activity such as soil dehydrogenase, acid phosphatase, pH, TK, and C/N cycling all promot-
ing high crop yields [64–66]. Like other actinobacteria, the presence of Marmoricola seems
to be sensitive to certain environmental conditions and agricultural practices, which can be
an asset in determining the level of soil health, even in the short term [15,67]. It can be seen
that with GBH application rates of 1.67 L ha−1 and above the abundance of Marmoricola
is lower. If different GBH application rates caused specific shifts in bacterial community
composition (for example, a decline in nitrogen-fixing bacteria at higher rates), this could
highlight the potential rate-specific impacts of GBH applications on critical soil functions.
GBH can indirectly affect soil health through its impact on microbial populations involved
in key processes like nutrient cycling and organic matter decomposition [68,69]. Higher
GBH application rates or more frequent exposition to them might impair these processes by
suppressing microbial taxa essential for breaking down organic matter, releasing nutrients,
and maintaining soil structure.

The cross-effect between CC and GBH application rates on Eukaryotes content
A difference is observed between crop managements for Enoplea, a class of nematodes

(Figure 5) the only representative of this genus in this study being Longidorus genus. This
genus counts 176 species and generally includes phytopathogenic species, an external
parasite of plant roots in the rhizosphere [70,71]. Longidorus abundance is higher in plots
with CC and significantly more present in DSCC 0.84 plots (Figure 5). The lowest abundance
of this type of nematode was observed in the DS 3.33 plots (Figure 5). That may be explained
by the fact that the effect of glyphosate could potentially be more pronounced, particularly
among sensitive organisms such as fungi, nematodes, and certain protozoa [72]. It has been
observed that even at low GBH application rates, glyphosate can induce oxidative stress in
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nematodes [73], and that the persistence of glyphosate in the environment can influence the
structure, abundance, and recovery of various nematode communities in the long term [74].
Here, the effects are more pronounced and harmful to the nematodes beyond 0.84 L ha−1 in
two applications. On the other hand, these results may also represent the more pronounced
presence of vegetation in these plots. The presence of CC increases root diversity and
root exudates, which probably favours the presence of nematodes [75–79]. However, the
direct influence of the use of CC on Longidorus abundance is not demonstrable in this
study, which suggests that another factor could explain their higher abundance in DSCC
0.84 plots. In these plots, a higher weed cover rate was measured, compared with plots
with other weed managements and higher GBH application rates [63].

Agaricomycetes are the other eukaryote group where significant differences were
observed between crops managements (Figure 5). This class of fungi comprises almost
36,000 species, some closely associated with wood rot [80,81]. Schizophyllum abundance
was highest in DSCC 3.33 plots compared to DSCC 1.67 plots (Figure 5). Fungi, particularly
arbuscular mycorrhizal fungi, can be sensitive to glyphosate and their response to different
application rates could vary [82,83]. However, their abundance was very low here and it is
known that the influence of crop managements on Schizophyllium varies greatly according
to the species known in this genus [81,84].

It is important to note that the effects of GBH may become more pronounced
with longer exposure, resulting from higher application rates or more frequent appli-
cations [72,85,86]. In crop managements where GBH are applied at higher rates, the impact
on microbial communities might be more pronounced in DS compared to DSCC. These
interactions could modulate microbial diversity and soil health in complex ways. If GBH
are used along with DS as part of a weed control strategy in conventional farming, their
potential effects on soil microorganisms could interact with the broader impacts of the man-
agement practices themselves (e.g., ploughing, inorganic fertilizers, other pesticides) [17,87].
For example, DSCC, which may involve more sustainable practices (e.g., cover cropping or
reduced tillage), could mitigate some of the negative impacts of glyphosate on soil health
by enhancing soil structure or organic matter content, which in turn might act as a buffer
against some harmful effects of GBH on the microbial communities [25]. However, the
number of studies comparing DS and DSCC with GBH applications on soil microbiota
richness remains limited, particularly in temperate regions, despite the increasing interest
in the use of CC [41].

Also, another important factor to consider is the potential development of resistance
to glyphosate among soil microorganisms. While this is more commonly associated to
weeds, there is growing evidence that certain soil bacteria and fungi can develop tolerance
to glyphosate over time [88,89]. It was reported that P. lilacinum has the ability to degrade
glyphosate to a considerable extent and to utilise the chemical as a P source, without
showing rate-dependent negative effects on its growth [89]. The use of higher GBH
application rates for effectively controlling weeds along with climate change might also
lead to collateral damage to non-target organisms, including beneficial microbes. It is
crucial to assess whether the benefits in terms of weed control outweighs the potential
negative effects on microbial diversity and ecosystem functioning at higher rates.

5. Conclusions
In this study, no significant difference in microbial richness, evenness, or diversity

between DS and DSCC crop managements in both 2018 and 2019 are observed, suggesting
that other factors such as climate, or crop type may play a more dominant role in shap-
ing soil microbial communities in the short term. However, specific changes observed
in prokaryotic and eukaryotic groups, highlight the complex interactions between crop
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management practices, GBH application rates, and soil microbial communities. While GBH
application rates does not significantly affect microbial richness, certain taxonomic groups,
particularly Anaeromyxobacter, Marmoricola and Enoplea, show varying responses to dif-
ferent GBH application rates and crop management. The presence of CC seems to facilitate
the growth of certain microbial populations, possibly by increasing resource availability
through root diversity and exudates. While GBH application rates show a subtle impact
on microbial communities, their effects may become more pronounced over time with
higher rates or repeated applications. Additionally, the combined effects of GBH and CC
on microbial abundance are still complex and require further exploration. This relationship
appears even more complex in soybean plots, where many differences in the content of
certain soil elements were also observed, potentially influencing the abundance of certain
taxonomic group. Long-term studies are needed to fully understand the cumulative impact
of glyphosate on soil health and microbial dynamics. Moreover, the potential for microbial
resistance to glyphosate must be considered, especially considering increasing herbicide
use in field crop agriculture with climate change. These results underline the importance
of considering both the direct effects of GBH application and the broader management
practices in maintaining soil biodiversity and ecosystem functions.
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